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Abstract— The aim of the presented work is to develop an 
approach for the proper assessment of pseudo measurements for 
a three-phase distribution system state estimation under the 
conditions of a real medium voltage grid. The evaluation is based 
on the validation of the voltage estimation error, which describes 
the difference between the calculated node voltages determined 
by the distribution system state estimation and the actually 
measured node voltages, as a measure of the quality of the 
calculated results. By replacing real measurement values with 
pseudo measurements, the influence on the quality of the three-
phase distribution system state estimation for incomplete 
measurement acquisition will be investigated. For this purpose, 
customizable synthetic profiles are used to replace real power 
values in this work.  

Index Terms— three-phase distribution system state estimation, 
real measurement data, pseudo measurements, voltage estimation 
error, meter placement, medium voltage. 

I. INTRODUCTION 
The increase in decentralized renewable energy sources 

(RES) has in recent years progressively led to the fact that 
electricity no longer exclusively flows from the voltage levels 
of the transmission system to the subordinate voltage levels of 
the distribution system, in order to supply the end customer, as 
it used to be in the classic electrical energy supply. 
Furthermore, depending on the local feed-in situation, a load 
flow reversal on the distribution grid side from the lower grid 
levels to the upper grid levels increases. A particularly high 
level of these multidirectional load flows can be recognized by 
the constant expansion of photovoltaic systems (PVS) in the 
low-voltage grids as well as wind turbines (WT) in medium and 
high voltage grids. Other aspects that need to be considered 

with regard to changing load flow situations result from the 
growing number of electric cars as well as the increasing use of 
storage facilities, e.g. for self-consumption optimization. On 
the one hand, this leads to new simultaneities, which can result 
in new peak loads, which in turn lead to previously unknown 
utility loading. On the other hand, distribution system operators 
(DSOs) are encouraged to increase the efficiency of integrating 
RES and new types of consumers through the use of smart 
technologies and structures, such as feed-in and load-
management. The progressively changing feed-in and load-
situations lead permanently to sustainably changed supply tasks 
for the DSOs, which will in the short or long term require a 
much more detailed knowledge of the current system state in 
the distribution grids. 

II. CHALLENGES 
In the transmission system, the system state has been 

reliably determined by state estimations (SE) since the 1970s 
[1]. However, the different framework conditions, such as the 
network topology, network impedance or missing measurement 
values, prevented an immediate adoption of the concept of SE 
in the distribution grids. The adaptation of the transmission 
system SE to the distribution system has been the subject of 
research for quite some time. Thereby, it has been shown that 
in particular the small number of measurement points in the 
distribution grids, especially at the medium and low voltage 
level, is occasionally one of the biggest hurdles for the area-
wide use of SE in these voltage levels. The monitoring of a 
power system is usually associated with a high financial 
investment. In particular, investment costs in measuring 
systems and in information and communication technologies 
play a decisive role. For this reason, it raises questions on the 
DSO side, regarding the required number of measurement 
points in a monitored grid area, to establish complete 
observability at all grid nodes, even if the considered grid is not 
completely measured. This in turn raises the question of the 
quality of a SE with a reduced number of real input data. For 
this reason, the research project grid-control [2] offers the 
possibility to implement a Distribution System State Estimation  



 

(DSSE) for a real medium and low voltage grid and to validate 
the quality of the DSSE under real framework conditions by 
means of measured data. 

III. STATE OF THE ART  
A. Methodes for State Estimation in Distribution Grids 

Several methods for DSSE have been investigated in the last 
years, with the most widely optimization concepts Weighted 
Least Squares Estimator (WLS), Weighted Least Absolute 
Value Estimator (WLAV) and Schweppe-Huber Generalized-
M Estimator (SHGM). The most common technique, the WLS 
method, has been already widely investigated in [7], [8], [9] and 
[10]. The performance of WLS was compared with the other 
algorithms based on different criteria. They ascertained that the 
WLS algorithms give best performance under Gaussian 
assumptions for known noise characteristics and, therefore, it is 
the most suitable method for the use in distribution systems. 
Due to the mentioned research results, the algorithm presented 
in this paper relies on a WLS method adjusted for power 
systems as presented for example by Abur and Exposito [3]. 
The state estimation algorithm serves to solve the minimization 
problem in equation (1), which describes the weighted sum of 
squares between the calculated and the measured values. 

 !"#	%(') = [+ − -(')]/ ⋅ 123 ⋅ [+ − -(')] (1) 
The above equation describes the objective function J(x) of 

the DSSE, where z describes the measurement vector and h(x) 
the vector of the nonlinear functions relating the measurements 
to the state variables in vector x. In addition, R describes the 
weighting matrix of the measurement values as a function of 
the measurement value accuracy. The goal of the DSSE is to 
determine the state variables x based on the available 
measurement values. The determination of the state variables 
(complex node voltages) takes place by deriving the objective 
function J(x), which can be described as follows: 
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In equation (2), H describes the Jacobian matrix in which 
the mathematical functions of the used measurements derived 
from the state variables are represented. The condition for 
minimizing equation (2), is given below in equation (3). 

 89(') ⋅ 123 ⋅ [+ − -(')] = 0 (3) 
In order to determine the state variables in x, equation (3) 

must be solved for x. This is initially not possible due to the 
nonlinearity of the measurement data model defined in h(x). In 
order to be able to change the equation nevertheless, h(x) is 
developed for a linearization in a Taylor series. Since H already 
describes the first derivation of the calculated measurements 
with respect to the state variables, the Taylor series can be 
represented as follows. 

 -(') = -(';) +8(';)∆' (4) 
By substituting equation (4) into equation (2), equation (5) 

is obtained. It describes the target function of the DSSE, which 
was linearized by a Taylor series and developed around the start 
value x0. 
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Using an iterative calculation of equation (5) after Newton-
Raphson, the changes in the state variables are determined 
until they fall below a given threshold [3], [4], [5]. Equation (5) 
describes in matrix notation an equivalent formulation to the 
Maximum-Likelihood-Estimator for normal distributed 
measurement errors, on which the WLS method is based [6]. 
This procedure is used to determine the most likely system 
state considering the measurement errors. 

B. Algorithm for Three-Phase State Estimation in 
Distribution Grids 
The algorithm selected for the three-phase DSSE in this 

work is based on the formulation of the complex node voltages 
in rectangular formulation as proposed in [11]. The advantage 
of this method is the use of all types of measurement data. 
However, unlike the use of polar node voltages, the equations 
are based on currents instead of power. For this procedure, the 
power measurements are therefore converted into equivalent 
current measurements in each iteration. The partial derivatives 
of the measurement model result in a matrix with exclusively 
constant entries which correspond to the real and imaginary 
parts of the node admittance matrix, i. e. the values for the 
conductivity G and the susceptance B, and remain the same in 
each iteration step. 

IV. GRIDLABORATORY WITHIN THE RESEARCH PROJECT 
GRID-CONTROL 

Figure 1 shows the grid laboratory of the research project 
grid-control. The grid laboratory consists of one medium 
voltage feeder, which supplies 43 local grids. 34 substations of 
the local grids are measured at the low-voltage busbar of the 
transformer and recorded with a time resolution of one minute. 
The recorded measurement types are active power, reactive 
power, phase-to-phase voltage, conductor-to-ground voltage 
and current. 

A. Composition of the Gridlaboratory 
Figure 2 shows in the upper part, a schematic representation 

of the medium voltage feeder from Figure 1. It illustrates the 
switching substation and an exemplary composition of the 
supplied local grids. In this case the switching substation is part  

 
Figure 1.  Topology of the grid in grid-control 
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of an upstream 20 kV medium voltage grid. Furthermore, the 
measurement devices are indicated at the low voltage busbars 
of the transformers connected to the local grids. The local grids 
supplied by the 20 kV feeder are of varying size in terms of the 
connected number of loads, load types, numbers of RES 
generators and installed RES power. The occurring load types 
are households, agricultures and commercials, the occurring 
RES generator types are PVS and WT. In general, 927 
household, 78 agriculture and 81 commercial loads are supplied 
by the 20 kV feeder. This is countered by 197 PVS with an 
installed power of approx. 2.7 MW and one WT with an 
installed power of 1.8 MW. 

V. MODEL PARAMETERIZATION FOR THE EVALUATION OF 
THE DSSE 

A. Aggregated Synthetic Load and Infeed Values for the 
local grids 
Due to missing measurement points in medium and low 

voltage distribution grids it has become common in the process 
of DSSE to use substitute values, so called pseudo 
measurements, in compensation. The lower part of Figure 2 
illustrates the same medium voltage feeder as in the upper part. 
In contrary to the upper part, the supplied local grids are 
simulated by load and infeed pseudo measurements which are 
directly connected to the medium voltage feeder. The depicted 
gaussian distribution (green dashed line) besides the outlined 
load and infeed mockups in the lower part of Figure 2, indicates 
the error due to the pseudo measurements. They are comparable 
with the measurement error of a measuring device but unless 
they are not really measured but only assumed as measured, 
they have a much wider curve around the expected value, so 
that they will be treated as less trustworthy input data compared 
to real measured input data. As indicated above not all of the 43 
local grids are measured. The 9 unmeasured local grids are 
replicated using pseudo measurements from the beginning. The 
synthetic load profiles used as pseudo measurements in this 
work are based on the method proposed in [13] and [14]. In [13] 
the comparison of stochastic load profile modeling approaches 
for low voltage residential consumers is carried out, to remodel 
the characteristic of real smart meter measurement data. In this 
work the approach based on a Markov chain is used. In [14] the 
adaption of synthetic load profiles with regard to the maximum 
power and the annual energy consumption for a better 
simulation of the consumer behavior is described. This is done 
by a Power-Energy-Denormalization (PED) method, which 
aims to calculate load profiles, where the maximum power and 
the annual energy consumption is a degree of freedom and can 
be chosen by the user. The synthetic infeed values are estimated 
on the basis of a reference PVS. Scattered measured values are 
available as well as the technical data of the reference PVS. The 
measured values will be normalized to the known installed 
power, to receive a standardized infeed power. This 
standardized power can then be used to determine the infeed 
power of the remaining PVS in the grid area. The aggregation 
for the local grids is done by averaging the individual load or 
infeed profiles based on their corresponding number. The result 
of the aggregation process in combination with the PED method 
is illustrated in Figure 3. The blue solid line represents the 
measured active power of the residual load. The orange dashed 
line is the result of the aggregated load method described above.  

 
Figure 2.  Schematic representation of the medium voltage feeder with real 

and synthetic values for the supplied local grids 

Furthermore, the synthetic infeed active power values of the 9 
PVS in the exemplary local grid (green dot dashed line) is 
shown within the Figure 3. The resulting residual synthetic load 
curve is represented by the red dotted line. At first glance, the 
synthetic curve closely approximates the measurements, 
whereby the characteristic day night distinction is well 
reproduced. Nevertheless, deviations are clearly visible, 
especially in the area of the occurring peaks. The fed back 
provoked by the PVS occurs in the synthetic curve at the same 
time steps as in the measurements. With regard to the method 
of weighted least squares, the normal distribution of the errors 
is an important prerequisite for using the synthetic input data in 
the VNZS. For this reason, a visual check was made for the 
normal distribution of the deviations using histograms. 
Considering, that the synthetic residual load curves do not 
contain any measurement information, they describe the 
behavior of the local grid within an acceptable range. In 
addition, the described procedure thereby allows preserving the 
previously mentioned normal distribution of the measurement 
errors and thus allows the application of the synthetic load 
values in the DSSE without restrictions. 

B. Conversion of the measurement and pseudo measurement 
accuracy to wighting factor 
The depicted gaussian distribution (blue solid line) besides 

the outlined local grids in the upper part of Figure 2 indicates 
the accuracy of the measuring devices installed at the low 
voltage busbars at the substations of the measured local grids. 
The measurement accuracy provides the information about the 
quality of the measuring device and thus a measure of deviation 
from the expected value µ. The red vertical line in Figure 2 
describes µ and the blue marked normal distribution describes 
the standard deviation σ around the µ. In  the  DSSE  algorithm 
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Figure 3.  Comparison of real and synthetic residula load curves based on an 

examplary local grid of the 20 kV feeder 

the information about the measurement error is used to 
categories the given measurement input data for the evaluation 
of how trustworthy the single measurements are. The values 
thus represent the weighting factors of the weighting matrix R 
in equation (1). Assuming that the range between (µ - 3σ) and 
(µ + 3σ) covers 99.73% area under the Gaussian distribution, 
equation (6) can be used to convert the accuracy of the 
measurement to the standard deviation [12]. 
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The accuracy is described by a given percentage of the 
maximum error around µ. The measurement error is set by the 
meters and is 2% for voltage and 3% for power measurements 
in this work. The error of the synthetic data compared to the 
measurement data is determined by the symmetric mean 
absolute percentage error and is for the residual load curves of 
the individual local grids in the range up to 150%. 

C. Simulation Scenarios  
Due to the minute time resolution of the measured data, a 

complete annual simulation is therefore not possible in relation 
to the computation time, since this involves 525,600 time steps 
to be simulated. For this reason, simulations in the range of one 
week are first carried out in the period of the highest load 
whereby the number of time steps to be simulated being 
reduced to 10,080, thus resulting in an acceptable computation 
time. The first simulation scenario during the validation process 
is to determine the baseline condition for the considered 
medium voltage feeder during the mentioned period. The 
baseline condition is defined as the system state, which results 
from using the real recorded measurements as input for the 
DSSE. The goal behind the baseline is, therefore, to determine 
the assumed system state based on the real measured values and 
to define this as a reference for the considered medium voltage 
feeder. The second simulation scenario during the validation 
process is therefore to investigate the influence by the use of 
load and infeed pseudo measurements on the DSSE by 
comparing the results with the reference simulation. Because of 
the synthesizing process it can be expected, that there will be 

differences between the reference simulation and the pseudo 
measurement simulation. To approach the initial reference 
simulation, selectively placed measured values are included 
into the DSSE in order to reduce the deviations and to achieve 
the specified quality of the meter placement. This is the third 
simulation scenario. Referring to the question of the system 
operators in the context of the required number of measurement 
points in the grid and their placement, the simulation scenario 
two represents the assumed case of a non-measured grid, which 
is to be completely monitored by an appropriate measurement 
placement. 

VI. EVALUATION 
A. Measure of Quality 

The aim of the methodology presented in this work is to 
obtain a proper assessment of pseudo measurements for a three-
phase DSSE under the conditions of a real medium voltage 
grid. Usually, the load flow to a prevailing load and infeed 
situation is determined on the basis of the appliance 
impedances and the complex node voltages existing at this 
time. Since the complex node voltages change for each load and 
infeed situation, they provide a good basis for evaluating the 
influence of the pseudo measurements. As a measure for the 
quality, therefore, the voltage estimation error according to 
equation (7) is defined. 

 HIJK
LL% =

|O|PQQR − |O|SJTUVIJSJWX
|O|SJTUVIJSJWX

 (7) 

The voltage estimation error describes the relative 
difference between the calculated node voltages of the DSSE 
and the recorded node voltage measurements at the substations. 
In agreement with DSOs, the 99% percentile and a deviation of 
±1% for the calculated node voltage in comparison to the 
measured voltage value was defined as sufficiently accurate as 
a guideline.  

B. Results 
Figure 4 shows the result for the baseline simulation 

scenario. Usually the switching substation is used as the slack 
node during the calculation. In this case, the voltage 
measurements on the switching substation cannot be used due 
to erroneous measurements, which is why the next measured 
substation in the feeder is used as the slack node. At the slack 
node, the voltage measurements are given as input data for the 
DSSE. The other measuring points marked in Figure 1 are set 
with the actually measured active and reactive power values as 
input data for the DSSE. The maximum errors for the real 
measurements are chosen as described in section V.B. On the 
abscissa in Figure 4, the estimation error of the voltage 
magnitude in p. u. is illustrated and, on the ordinate, the relative 
frequency of occurrence. The results for the three phases are 
given by the three different curves, at which each curve 
consisting of 340,000 data points, which result from the 
simulation of a week on the basis of minute values. The gray 
area describes the already mentioned tolerance range of ±1% 
deviation around the measured value. The numbers in brackets 
in the legend reflect the amount of deviations of the 99th 
percentile in the tolerance range. In the basic simulation, more 
than 99% of all deviations between the calculated and measured 
voltage magnitude are within the tolerance range. The 
maximum errors occur in the range of 4.6%, but with a 
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probability of occurrence of less than 1%. Figure 5 shows the 
result for the second simulation scenario. As with the baseline 
simulation, the second measured station will be used as the 
slack node. In this scenario the only real measurement as input 
data for the DSSE is the voltage measurement at the slack node. 
The other measuring points marked in Figure 1 are now set as 
pseudo measurements with the synthetic residual load curves 
adapted for each local grid as shown in Figure 3. The maximum 
errors for the pseudo measurements are chosen as described in 
section V.B. Compared to the baseline simulation, over 99% of 
all values in the 99th percentile range are also in the tolerance 
range. In contrast to the baseline simulation, the occurrence 
within the tolerance band is more limited. This indicates that 
the errors within the tolerance range are larger, as opposed to 
using the real measurement data. It can also be seen that a 
greater deviation in the occurrence of the individual phases 
occurs in comparison to Figure 4. This is due to the symmetric 
distribution of the pseudo measurements on the individual 
phases. The unbalanced loading of the real measured data is not 
reproduced here. The maximum errors occur in the range of 
3.2%, also with a probability of occurrence of less than 1%. 
These results indicate that a precise voltage measurement at the 
slack node makes a decisive contribution to the estimation of 
voltage magnitudes at the nodes in the feeder. The assumed 
node power values seem to have a small influence to that effect. 
Additional measurements therefore do not seem to be necessary 
to estimate the node voltage magnitudes in the considered grid. 
In contrast, with regard to the current flow through the lines, 
additional real measuring points in the feeder must be taken into 
consideration. First results show that the node power values 
have a major impact on the estimation accuracy of current 
flows, which is why simulation scenario three needs to be 
further evaluated. 

I. CONCLUSION 
The presented approach for evaluating the proper 

assessment of pseudo measurements done by a reduction of real 
measurements in the considered gird area gives the opportunity 
to determine the influence of pseudo measurements on the 
system state. The results presented in this work show that the 
presented synthetic residual load curves are suitable for the 
estimation of the node voltage magnitudes in combination with 
a real voltage measurement at the slack node, even if the 
unbalance effect is not considered. 

 
Figure 4.  Estimation error of the voltage magnitude for real measured 

values as input data for the DSSE  

 
Figure 5.  Estimation error of the voltage magnitude for pseudo 

measurements as input data for the DSSE  

First results show, however, that for the estimation of the 
current flows, the pseudo measurements are not sufficient and 
therefore further real measuring points in the feeder have to be 
investigated. Therefore, further investigations regarding the 
simulation scenario three are necessary. In addition, the method 
will be tested on another real medium-voltage grid and a real 
low-voltage grid in which measurement values are recorded in 
order to verify the results.  
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