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Abstract—Emerging smart-grid applications in low-voltage
systems generate a need to forecast not only aggregated load
profiles, but individual, consumer specific profiles in a high
temporal resolution. These load profiles are noisy and volatile,
which makes forecasting them challenging. A short term load
forecasting (STLF) model, based on Markov chains, is presented
in this paper. It is designed for continuous training during
operation and can be pre-trained, making it universally ap-
plicable. Its performance is evaluated at a synthetic dataset of
individual households. The predictive accuracy of the model is
investigated for different forecasting resolutions and levels of load
aggregation. The results show that the general characteristics of
individual, high resolution load profiles is modelled reasonably
well, outperforming a naive prediction, utilizing a scaled standard
load profile.

Index Terms—STLF, smart-grid, residential, low-voltage,
Markov chain, forecast, time-series

I. INTRODUCTION

The continuing increase of distributed generation, as
well as emerging smart-grid applications in low-voltage
systems generate a need to forecast not only aggregated load
profiles, but individual, consumer specific profiles in a high
temporal resolution. These load profiles are a lot noisier and
also more volatile than the highly aggregated load curves
used in transmission systems for load flow calculations and
predictions. Forecasting models typically used in high-voltage
and extra-high-voltage systems are therefore ill suited to
predict individual consumer profiles accurately [1]. Load
profiles of individual consumers show large power spikes for
short periods of time with a low base consumption during
the rest of the time. Due to the stochastic nature of these
power spikes STLF for individual households is challenging
[2]. However, reoccurring events and load patterns can be
predicted by analysing historical data.
There are not many sources dealing with the forecasting of
individual, residential load profiles. In [3] a Long Short Term
Memory (LSTM) Neural Network is used. In [1] a Non-linear
Auto-Regressive eXogenous (NARX) model is evaluated. In
[4] the “impact of calendar effects and forecast granularity” is
investigated for different forecasting techniques like Support
Vector Machine (SVM), Multiple Linear Regression (MLR),
Regression Trees and Neural Networks. However, in the
aforementioned sources no high resolution load profiles were
used, but 30 minute mean values instead, which show a

highly skewed frequency distribution, in comparison to one
minute profiles [5]. Moreover, the prediction models based
on neural networks are often difficult to implement in real
operation scenarios with continuous training, due to the high
training durations. Most research seems to be focused on the
prediction of aggregated load profiles at the mv/lv transformer
level, ignoring the characteristics of the individual profiles,
which they consist of.
The goal of STLF in this paper is to forecast representative,
high resolution load profiles for each household in a low-
voltage network in order to perform (probabilistic) system
analysis - e.g. state prediction. The forecasted profiles should
have the same characteristics as the real data, mainly the
amount of power spikes and the time of their occurrence
should match within a reasonable error margin. Furthermore
the accumulated predictions of all households within the same
low-voltage network should at least match the predictive
accuracy of a naive prediction, described by a scaled standard
load profile. The H0 profile from [6] is used as the naive
prediction in this paper.
In order to achieve these goals, a forecasting model based
on Markov chains was developed. It utilizes high resolution
smart-meter measurements as training data. The model is
designed for continuous training with individual smart-meter
data. The major benefit of this approach is that over time
a model pre-trained with synthetic data will adjust to the
consumer specific behaviour of one household, or a cluster
of similar households, and therefore increase its predictive
accuracy. The model is of limited complexity and therefore
easy to use. At the same time the model is universally
applicable, because of its pre-training. It can be applied
without any measurements from the field, but at the cost of
severely reduced accuracy.

II. METHODOLOGY
A. Dataset

The dataset used in this paper is taken from [7]. It consists
of 74 synthetic load profiles for individual households
in Germany with a time resolution of one second. The
synthetic data is based on smart-meter measurements from
the year 2010 with a temporal resolution of 15 minutes. In a
second measurement campaign, lasting two weeks, the power



consumption of 30 households in Austria was recorded with
a resolution of one second. Each 15-minute interval of the
base profiles was replaced by a section of the one second
data corresponding in their energy demand [7].
In order to decrease computation time, the data used in this
paper is averaged for each minute and only 20 of the 74 load
profiles are considered. This is also the amount of households
assumed in this paper to represent one feeder in a low-voltage
network. An example of a 15-minute base profile and the
corresponding one minute synthetic power consumption is
shown in Fig. 1.
Because of the synthesizing method chosen in [7] electrical
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Fig. 1. Synthetic load profile example from the dataset taken from [7]

devices with the same energy consumption but different
characteristics can get mixed up. This could affect forecasting
accuracy negatively, because time dependent correlations
would get lost. E.g. the usage of clocked hotplates is in
reality limited to certain times of the day. During the process
of synthesizing in [7] the very distinct characteristics of
hotplates could also be used for time periods outside of their
real operating times, if the energy consumption is equally
high. This needs to be considered when comparing the results
of this paper with other works, performing STLF on real
measurements.

B. Forecasting model based on Markov chains

The STLF model used in this paper is based on [8]
and [9] and utilises Markov chains. The model is designed
for continuous training with individual smart-meter data.
Therefore some modifications were made to the model in [8],
in order to enable continuous training.
First, the training data is discretized into 100 bins, from 0W
to 15kW, resulting in a resolution of 150W. The maximum
of 15kW was chosen because it is the physical limit for
a single phase power consumption, assuming a 64A fuse
in a low-voltage network (230V · 64A = 14.72kW ). Each
transition from the power consumption Ptn into the value
of the next time point Ptn+1 , is counted inside a transition

matrix, according to the power values of the transition, as
depicted in the transition matrix below. E.g. a change in
power demand from Ptn = 315W to Ptn+1 = 100W would
result in incrementing f3,1 by one, because 315/150 = 2.1
and 100/150 = 0.66.


P1,tn+1

P2,tn+1
. . . P100,tn+1

P1,tn f1,1 f1,2 . . . f1,100
P2,tn f2,1 f2,2 . . . f2,100
...

...
...

. . .
...

P100,tn f100,0 . . . . . . f100,100


The transition matrix now stores the training data’s frequency
distribution, from which the transition probabilities are not
calculated, as would be usual with a Markov model. This way
new observations can be added to the already trained model,
instead of having to re-train it with all of the values. When
using the transition matrix in a random walk, the transition
probabilities are calculated on the fly, by dividing the entries
of each row in the transition matrix by its cumulative sum.
Not all transitions are stored in the same matrix. Instead,
the time of day in steps of 15 minutes (t = 96), the month
(m = 12), the season (s = 4) and whether it is a working
or a non-working day (w = 2) is considered during training.
Furthermore the training is carried out separately for each
household (h = 20). Therefore t · m · s · w · h = 184320
different 100x100 transition matrices are created and stored
inside a NoSQL database during the training phase.
When performing a forecast, the appropriate transition
matrices are loaded from the database for each step within
the random walk. If a less specific subset of training data is to
be considered, e.g. all summer workdays, the corresponding
matrices can be added together, because they store the
training data’s frequency distribution instead of the transition
probabilities. This enables many different approaches in
combining the transition matrices. Five approaches are
compared in this paper:

• Daytype
• Daytype & Season
• Latest 1 months
• Latest 2 months
• Latest 3 months

The “Daytype” method is used as a basis and only differ-
entiates between the households, the type of day (working
day - non-working day) and the time of day. The data of
the entire year is therefore taken into account in this method.
The method “Daytype & Season” also takes the season into
account, reducing the amount of data being accounted for.
The “Latest X months” methods differentiate between the type
of day, while taking only the latest X months into account,
starting with the month of the forecasting date. So when
forecasting the 28th November with the “Latest 2 months”
method, only the training data of October and November is
being considered.
All forecasts are carried out in a temporal resolution of one



minute with a forecasting horizon of 24 hours. Forecasts are
repeated 100 times for each of the 20 synthetic load profiles.
In the final evaluation, the results are aggregated to different
temporal resolutions, in order to compare the results with other
papers like [1].

C. Evaluation Criteria

There are two main criteria for evaluation used in this paper.

a) Mean Absolute Percentage Error: The Mean Absolute
Percentage Error (MAPE) is described as:

MAPE =
1

T

T∑
t=1

∣∣∣∣Rt − Pt

Zt

∣∣∣∣
with Zt =

{
Pt, if Rt = 0

Rt, otherwise

(1)

where Rt is the recorded and Pt the predicted power
consumption at the time t.

b) Theil’s inequality coefficient U2: In order to compare
the STLF model with a naive prediction Theil’s inequality
coefficient U2 is used:

U2 =

√
1
T

T∑
t=1

(Rt − Pt)2√
1
T

T∑
t=1

(Rt −Nt)2

(2)

where Rt is the recorded, Pt the predicted and Nt the naively
assumed power consumption at the time t.
In case of a perfect prediction Rt is equal to Pt, thus U2 = 0.

If the forecast is as good as the naive prediction
T∑

t=1
(Rt−Pt)

2

is equal to
T∑

t=1
(Rt −Nt)

2, resulting in U2 = 1.

For U2 > 1 the forecast accuracy is not as good as that of
the naive prediction. U2 < 1 indicates a better accuracy than
the naive approach. In order to justify the use of any STLF
model its forecasting accuracy should be higher than that of
the naive prediction.
The standard load profile H0 from [6] is used as the naive
prediction. It is scaled according to the amount of energy
consumed on the previous day.

III. RESULTS

The presented results refer to a forecast for one workday
(Monday 29.11.2010) and one non-working day (Sunday
28.11.2010). Some load profiles are more difficult to predict
than others, as can be seen in Fig. 2.
This is different depending on the forecast date, as consumer

behaviour includes random variations and can therefore only
be modelled for average days, not for times of unconventional
consumer behaviour.
The boxplots in the upper subfigure of Fig. 2 each include
100 forecasts for the working day, comparing two different
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Fig. 2. Comparison of the prediction error for the working day with a time
resolution of one minute for different households

households A and B. The lower subfigure includes all
forecasts of the 20 households. None of the five methods has
a significantly better prediction accuracy, when forecasting
individual load profiles at a time resolution of one minute.
When aggregating the 20 individual load profiles to represent
the power consumption of a whole feeder, the forecasting
accuracy is much better, as can be seen in Fig. 3. Theil’s
inequality coefficient indicates a better performance than
the naive prediction, with U2 < 1 for all five methods. In
contrast to the naive prediction, the waveform corresponds
very well with the measured values, as can be seen in Fig.
4. It shows one of the 100 predictions for the working day
with the method “latest 3 months”. The 20 load profiles were
forecasted separately and then aggregated.

In the next step, the one-minute forecasts were aggregated
in different temporal resolutions. Fig. 5 shows the results
at feeder level with a resolution of 30 minutes. The shown
forecast example and the scatter plot belong to the “latest 3
months” method. The red line in the scatter plot indicates
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Fig. 3. Forecasting accuracy at feeder level with a time resolution of one
minute for a working day

00:00 06:00 12:00 18:00 00:00
Time of the day

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Po
w

er
co

ns
um

pt
io

n
in

kW

Recorded Predicted Naive Prediction

Fig. 4. Example of a one minute forecast with the “latest 3 months” method
at feeder level for a working day

a perfect prediction. Other time resolutions were evaluated,
showing an increase in accuracy with lower time resolutions.
The error values (MAPE) indicate a reduced predictive accu-
racy of the STLF model, compared to those in [1]. It should be
mentioned, however, that in [1] half-hourly and hourly mean
values of real load profiles were used as the data basis, instead
of synthetic, minutely averaged profiles. Although the amount
of training data available for non-working days is greatly
reduced in comparison to working days, the presented STLF
model achieves similar accuracy for the analysed non-working
day. The results are summarized in Fig. 6 at feeder level with
a time resolution of 30 minutes.
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Fig. 5. Results for the working day forecast with a time resolution of 30
minutes at feeder level using the “latest 3 months” approach

IV. DISCUSSION AND CONCLUSIONS

From the results shown in section III it can be concluded
that the STLF model presented in this paper can be used
to predict load profiles of individual households with
high temporal resolution within reasonable tolerances.
The characteristics of individual load profiles are modelled
realistically, even though the MAPE for individual forecasts is
high. Due to the stochastic nature of individual load profiles,
it is impossible to achieve the same level of forecasting
accuracy for them, as for aggregated load profiles. It was
found, that the MAPE is not a representative evaluation
criteria for individual, high resolution load forecasting. For
point-wise comparison methods, like the MAPE, “an observed
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Fig. 6. Results for the non working day forecast with a time resolution of
30 minutes at feeder level using the “latest 3 months” approach

feature that is forecasted accurately in terms of size and
amplitude, but displaced in time, incurs a double penalty”
[10]. Therefore, new measures of the predictive accuracy
need to be developed for future application to this kind of
data [1] [10]. The predictive accuracy of the Markov based
model increases for levels of higher aggregation, e.g. at
a low-voltage feeder. It was shown, that the forecasts are
superior to a naive prediction, utilizing the standard load
profile for households H0 from [6]. No serious differences
were found in the five different selection methods of the
examined training data. One reason could be the use of
synthetic data in this paper, as explained in section II-A. The
load forecasts are sufficiently accurate to be used in further

system analysis, like state estimation and state prediction.
Furthermore, the design of the presented STLF model allows
continuous training with measurements from the field in
real time. The model can be pre-trained with historical data
from different sources, making it universally applicable. The
categorization and selection of the pre-training data needs to
be investigated. The application of the presented STLF model
to real high resolution data is necessary for a final evaluation.
Unfortunately, the amount of high resolution data, available
to the authors, is not sufficient at the point of writing this
paper.
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