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Abstract— This paper presents a framework for simulation 
environment for modelling and testing smart grids controlled 
by multi agent systems. The environment is based on the co-
simulation approach and consists of MATLAB/Simulink, 
where the power grid part is modelled, Java Agent 
DEvelopment framework, where the multi-agent system is 
programmed, and the interface between these two based on 
TCP/IP communication. The interface is designed to be general 
and it can be used also for purposes other than power systems 
application. Structure, integration within both ends, and 
functioning of the interface is the main focus of this paper. 

Keywords— co-simulation, multi-agent systems, JADE, 
MATLAB/Simulink, Smart Grids 

I. INTRODUCTION  
Nowadays the power systems tend to be increasingly 

decentralized and, therefore, there is a growing amount of 
devices which should be monitored and controlled, possibly 
in real time, in order to ensure stable and efficient operation 
of the system. State of the art in designing and optimizing of 
such systems is by means of simulations. There are different 
tools used to model power system domain and one of it is 
MATLB/Simulink with its Specialized Power Systems 
library [1]. In the control domain the multi-agent systems 
(MAS) have been gaining attention as the appropriate way of 
automated control of decentralized systems. A well-known 
environment for developing such platforms is Java Agent 
DEvelopment framework (JADE) [2]. There are however 
very limited options available for co-simulations between 
power system model and MAS. This paper presents the 
developed framework for integrating MATLAB/Simulink 
with JADE within one simulation environment. 

The interfacing of JADE with MATLAB/Simulink is not 
straight forward. Reference [3] describes a tool which was 
designed for the data exchange between JADE and Simulink 
but the project is not actively supported anymore and the 
integration into newer Simulink’s versions is troublesome. 
There are approaches like [4, 5], where JADE is interfaced 
with MATLAB but not Simulink. The authors in [6] 
proposed similar concept to the presented in this paper of 
interfacing JADE with Simulink using TCP sockets, however 
their design differs, since they proposed the communication 
over multiple TCP client-server connections. In this paper 
the connection is centralized and realized by only one TCP 
client on the Simulink model’s side and only one TCP server 
on the JADE’s side. One of the requirements for the 
framework is that the TCP client and server should be 
flexible and accept different number of agents exchanging 
data with Simulink and different number of exchanged 
signals without the need of additional connections. Although 

the framework was primary developed for application in 
power systems area its general character allows 
implementations in different areas as well. 

II. OVERVIEW OF THE ARCHITECTURE 
The proposed solution consists on interfacing two 

separated simulation environment each dedicated to different 
domain. One of them is MATLAB/Simulink with its 
Specialized Power Systems library where the power system 
domain is modeled. The other one is JADE with the 
representation of the upper level control realized by agents. 
The clue is the bidirectional exchange of data in a 
systematized manner throughout the duration of the 
co-simulation. Although Simulink provides components 
allowing the user to log and observe data during a 
simulation, the external access is not straight forward. One of 
the possible and effective solutions is implementing a 
communication component of a standard protocol [6,7]. In 
this case the TCP/IP protocol is chosen, where the client is 
on the Simulink’s side and server on the JADE’s side. In the 
presented architecture the client collects signals within 
Simulink model which can represent different measurements 
required for taking control actions and sends them to the 
server at regular intervals. The server receives signals from 
the client and distributes them among existing agents, Fig. 1. 

From the platform point of view the TCP server agent is a 
standard agent and communicates with others using provided 
in JADE means of communication – sending the Agent 
Communication Language (ACL) messages [5]. The block 
TCP client exchanges the data with other modeled blocks 
using standard Simulink signals connections. Although there 
can be different amount of blocks and agents on both sides, 
and even agents communicating with Simulink but not 
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having its equivalent as a Simulink block, there is always 
only one server and one client who concentrate the data and 
manage their exchange. The crucial role plays “Simulation 
time” block on the Simulink side, Fig. 1, since it is the source 
of reference time for agents’ operation and synchronization 
as described in section V. 

III. TCP CLIENT IN SIMULINK 
The TCP client is implemented on the Simulink side of 

the interface. Although there are ready-to-use blocks for 
sending and receiving over TCP/IP protocol provided in 
Simulink’s libraries, the use of these in the proposed 
application requires special consideration and adjustments 
regarding time synchronization and processing of incoming 
and outgoing signals. Therefore, a customized C-
programmed S-function block was used for this purpose [1]. 
The core functionality is owed to Windows’s Winsocks, 
which provides C-language API and mechanisms for TCP 
communication. The main tasks of this block can be 
summarized: 

• Establishing connection with the server, 

• Collecting and sending time stamp to the server at 
regular time intervals specified by the user together 
with the current values of the Simulink signals, 

• Receiving the co-simulation start flag and the set 
points from the agents, 

• Providing the signals to the proper Simulink blocks. 

Each Simulink block’s code consists of numerous 
routines, which are called at different stages of the model 
execution. The most important ones for the implementation 
of the TCP client block are depicted in Fig. 2 together with 
the stages of the TCP connection. 

The function mdlInitializeConditions is called only once 
to initialize the blocks parameters. In mdlStart the TCP 
socket is being opened and the connection to the server is 
established. This function is also called only once, at the 
beginning of the execution, which in turn means that the 
TCP connection remains open during the whole time of the 
co-simulation. The mdlOutputs function is called at every 

execution of the block. In its body the main part of data 
exchange takes place, Fig. 3. At the beginning of the 
simulation the block is awaiting the signal to start the co-
simulation. Once the flag is received the Simulink time and 
signals are sent to the server. The block is now waiting for 
the response of the server and is blocking the execution of 
the rest of the model. Thanks to such a solution, which 
prevents Simulink engine from further calculations, there is 
no risk of performing them with outdated set points. 

The TCP client block, presented in Fig. 4, has two inputs 
and two outputs. The first input is foreseen for the clock 
providing the simulation time and is separated from other 
input signals. This signal is used by the client to determine 
the time stamp sent to the server. The second input takes all 
remaining signals, which should be sent to the agent 
platform. The ordering of these remaining signals has to be 
done manually by the user. On the other end of the interface 
the signals are alphabetically sorted according to the agents’ 
names. However it is up to the user how the n-th signal of a 
specific agent will be interpreted by him. Therefore, the same 
ordering must be preserved in Simulink model. The first 
output is dedicated to the signal indicating the beginning of 
the co-simulation. Such a feature is relevant especially in 
case of bigger models with many state variables, when it is 
not always an easy task to determine the initial conditions for 
starting the model in a steady state. Therefore, when the user 
starts the Simulink model he can wait until the states 
converge to the steady state and only then start the 
co-simulation from the user interface in JADE. This event 
will be communicated to the TCP client block in Simulink 
and then propagated in the Simulink model as the mentioned 
flag signal. The block can be used with models of any size 
and complexity. Depending on these two factors and 
additionally the type of the solver and its step size the 
execution of the model might be very fast making this 
impossible for the user to react and start the co-simulation 
after starting the Simulink model. For this reason the TCP 
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Fig. 3 Flow chart of the code responsible for the communication in the 
TCP/IP client block. Fig. 2 The most important routines of a S-function in C-code. 



client block implements an artificial time delay during each 
execution, which can be easily adjusted by the user. For the 
more complex systems, whose execution is very slow 
anyway, the time delay can be set to 0 and for less complex 
and fast executed systems it can be increased to required 
number of seconds. As soon as the co-simulation was 
intentionally started by the user, the delay is omitted.  

The Simulink’s solver engine allows definition of time 
intervals at which particular blocks should be executed. By 
default it is each simulation step. However, it is not 
reasonable from the performance perspective and would 
slow down the co-simulation significantly, if the exchange of 
the data took place with resolution of milliseconds or less, 
depending on the modeled systems and its simulation step. 
Therefore, it is up to the user to specify the execution 
intervals by adjusting the “Sample time” parameter in the 
block’s mask (tsamp). In the performed co-simulations value 
of 1s was used, which means that the communication took 
place and, therefore, the signals were updated every second 
of the Simulink time. Thanks to the Simulink scheduler it 
also applies to the variable step solvers. 

IV. AGENTS AND TCP SERVER IN JADE 
An inseparable feature of an agent that has to be realized 

in the presented framework is its ability of interacting with 
the environment. This can be other agents, data bases, human 
machine interface, sensors, etc. For the communication with 
other agents JADE provides a messaging system based on 
TCP/IP where ACL messages can be exchanged. This is a 
very convenient method of exchanging information between 
agents within the platform, since the implementation details 
are hidden from the programmer. In turn the TCP server is 
responsible for the sensors-like signals. It receives them from 
the client in Simulink model and then redistributes among 
agents using ACL messages. The server is implemented 
within a JADE agent, whose tasks can be summarized: 

• Listening to the incoming client connection, 

• Sending the co-simulation start flag to the client, 

• Receiving the time stamp and current values of the 
Simulink signals. Redistributing them among the 
agents, 

• Collecting the new set-points from the agents and 
sending to the client. 

An important aspect to be considered is the way how the 
agents perform their tasks. In JADE the routines required to 
solve the tasks are defined in Behaviour classes. Among 
others there are: 

• generic Behaviour 

• OneShotBehaviour 

• CyclicBehaviour 

which differ from each other in their lifetime. 
OneShotBehaviour is executed only once, whereas the 
CyclicBehaviour is executed in a cyclic manner unless the 
programmer foresaw calling its killing routine. An object of 
the generic class Behaviour is destroyed automatically as 
soon as the tasks are completed, which may be done in 
several steps. In this framework another differentiation of the 
behaviour is proposed for the sake of time synchronization 
between Simulink and JADE as explained in section V: 

• Periodic behaviour – performed at regular time 
intervals, e.g. measurement of a monitored parameter. 
It is implemented as generic Behaviour class. 

• Reactive behaviour – performed only after request 
from other behaviour, within the same or different 
agent, e.g. providing specific data from a data base. It 
is implemented as CyclicBehaviour class. 

• CyclicTCPBehaviour – used for communication 
between an agent and the TCP server agent. 
Implemented as CyclicBehaviour class. 

The TCP server agent communicates with other agents via 
their CyclicTCPBehaviour. Hence, each agent 
communicating with Simulink in the proposed framework 
has to have an object of this class. This behaviour holds a list 
of all agent’s periodic behaviour objects together with their 
execution period and the time of the next execution. 
Additionally, in order for an agent to be recognized by the 
server agent, it has to register the necessity of TCP 
communication at Directory Facilitator (DF) agent during 
creation [9]. 

For the server agent it is not important how often 
particular agents need the access to the signals and it updates 
all the values each time it receives them from the client, 
which means every tsamp specified by the user in the TCP 
client block. 

As already mentioned in section III the signals exchange 
between the server and the client are sorted alphabetically 
according to the agents’ names given by the user. Based on 
the number of signals for each type of agent predefined in a 
configuration file, data structures of appropriate size are 
created for signals incoming from Simulink and set points 
out going from JADE to Simulink model. 

The server TCP agent is a typical JADE agent which 
means that it has a dedicated Java thread for itself but for the 
sake of parallel execution of the tasks at the MAS platform 
and listening to the request incoming from Simulink it runs a 
separated thread for this purpose. 

V. TIME SYNCHRONIZATION 
Multithreading is a desired and inseparable feature of 

MAS. It is a challenge for co-simulation however. The time 
synchronization between agents’ operation and the Simulink 
model execution is a main concern of the framework. As 
already signalized in section III depending on the chosen 
solver and size and complexity of the model the execution 
time may significantly vary. The agents developed in JADE 
run in real time according to the operating system’s clock. 
The lack of common time source is emphasized especially 
when the agents need to perform their tasks at regular time 
intervals or need to analyze the time trends of measured 
signals. This issue is solved by using the Simulink time as  

Fig. 4 Representation of the TCP client in Simulink model. 
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the reference time and by the “return confirmation” between 
behaviour. Simulink time synchronization The Simulink 
model time is chosen to be the one to synchronize with. In 
the Fig. 5 one step of the co-simulation within presented 
framework is depicted in a schematic way. As per Fig. 2 the 
co-simulation was already started. When Simulink engine 
scheduler calls the TCP client block it sends over TCP/IP the 
time stamp and current values of Simulink signals to the 
server agent and is waiting for the server’s response, 
blocking further computation in Simulink. The server 
redistributes the values among specific agents. Now the 
agents compare the current simulation time with their 
internal list of periodic behavior and decide whether or not to 
start them. If there is no scheduled behaviour for this period, 
the agent sends a message to the server agent in order to 
confirm that all its behaviour returned successfully. The 
confirmation is a vital part of the coordination from the 
server agent perspective. Without this it would be 
troublesome to ensure that no outputs would be updated after 
sending the values back to Simulink. In case an agent needs 
to perform some scheduled tasks all of them are required to 
send the confirmation back to the CyclicTCPBehaviour 
object after completing their actions, which is part of the 
“return confirmation” principle described in the next 
subsection. When all the considered agents confirmed 
successful return of their periodic behaviour, the TCP server 
agent requires them to submit the final values of the set 
points. Only after receiving responses from all the agents the 
server agent sends the current set points to the TCP client 
who should update its outputs with these values. The next 
simulation step in Simulink begins. 

A. Behaviour return confirmation 
All behaviour regardless if periodic or reactive must send 

a success confirmation to the calling behaviour, Fig. 6. This 
is an important difference in comparison to the native JADE 

framework, where behaviour normally completes without 
such a notification. In this framework it is called “return 
confirmation” principle and is based solely on ACL 
messages. The undeniable disadvantage of this principle is 
the fact that it limits the parallelization of the computation 
provided by a multithreaded environment, since each 
behaviour needs to wait for the end of its subbehaviour. 
Nonetheless, it helps ensuring that the results of all 
computations done by the agents would be sent to Simulink 
simultaneously and for the proper simulation instant, 
although the computations can differ in execution time 
greatly. An agent has to confirm the return only of all his 
own periodic behaviour to the server agent. The reactive 
behaviour is not considered here explicitly because they may 
be called on a request from another agent, RB 1 of the Agent 
N is called by PB n of the Agent 1 – Fig. 6. This means that 
an agent can send the confirmation to the server and at least 
one of its reactive behaviour may still not have returned 
because is dealing with providing some services to another 
agent. In the case like in Fig. 6 the reactive behaviour of the 
Agent N is implicitly considered as subbehaviour of a 
periodic behaviour PB n of an Agent 1. In general the 
behaviour dependencies can be summarized: 

• Periodic behaviour is created within 
TCPCyclicBehaviour according to the time schedule. 
They have to confirm the successful end of operation. 

• Reactive behaviour (RB) may be created at any 
moment and not only by agents communicating with 
the server. They have to confirm the successful end of 
operation to the requesting behaviour. 

• Periodic behaviour (PB) does not communicate with 
other periodic behaviour. They may be self-sufficient 
and not need services from other behaviour, PB n of 
Agent N, or communicate with reactive behaviour  



Fig. 6. Dependencies and communication between behaviour within the 
platform. 

within one agent or not, RB i of Agent 1 vs. RB 1 of 
Agent N. 

• Periodic behaviour may be designed to communicate 
only with other periodic behaviour, RB 2 of Agent 1. 

• Reactive behaviour can call subsequently other 
reactive behaviour but eventually only the return of 
the initial periodic behaviour must be confirmed to 
the server. 

On the one hand the implementation of the return 
confirmation principle allows coordinating the co-simulation 
but on the other the system following such a principle differs 
from the reality since the measurements as well as set points 
are captured and set with exact the same time stamp 
(although some of the values might be used by the agents 
less frequently). However at the initial stages of developing 
MAS-based new control strategies and of proves of concept 
such a feature is not a vital issue. 

B. Simulink’s variable step solver 
Simulink model can be computed using one of the 

implemented fixed or variable step solvers. It is not possible 
to arbitrary decide which solver is superior and for each 
model a proper one has to be chosen. A variable step solver 
has the advantage of dynamic adjustment of the step size 
according to the changes in model’s states. It can accelerate 
when there are only small changes and reduce the step when 
states change rapidly. As described in III the TCP client 
block is not executed at every Simulink step but the solver 
takes care of scheduling the steps so that this block is 
executed at the sample time defined by the user. However, 
the process of choosing the suitable step size by a variable 
step solver may cause issues in this particular application. 
The solver monitors the tolerances of the states’ changes and 
in case of violation due to a rapid unexpected change in one 
of the states steps back and repeats the computation with a 
smaller step. It can happen that it will cause the client to 
execute more than once for the same simulation instant. Such 
a case is illustrated in Fig. 7. The TCP client is executed 
whenever Simulink time is equal to multiple of tsamp. The 
first execution for time tsim+tsamp takes place for tos+2 but due 
to violated maximal tolerance the Simulink time is put back  

Fig. 7. Influence of the model state's tolerance on the simulink time 
depending on the time step. Circles represent values of model state’s 
tolerance, triangles values of Simulink time. 

and with smaller step reaches the value tsim+tsamp again at 
tos+6. It could be problematic when an agent manipulates 
some data in external places and needs to do this in time-
linear manner. On the other hand multiple performances of 
the whole chain for the same simulation step would slow 
down the co-simulation. Therefore, an additional check in 
the server agent was implemented in order to control the time 
stamp received from the client and to execute the cascade 
only, if the received value is greater than the last one. 
Additionally the user should consider definition of the 
maximal step size used by the variable step solver. 

VI. SMART GRID CO-SIMULATION 
The developed framework was used to design a 

multi-agent control system for controlling the operation of an 
active power grid. The agents are responsible for automated 
control of the MV grid to provide flexibilities at the HV/MV 
connection point. 

A. Model of the power system 
The modeled power system is based on the CIGRE MV 

European test system with slight adjustments [7]. Only one 
feeder is considered in the model, Fig. 8. Furthermore, there 
are additional distributed energy resources (DER) placed at 
MV level. One CHP is connected at node 1, a battery storage 
system (BSS) at node 6 and photovoltaic systems at node 5 
and 9. There is also a power switch connecting the grid to the 
higher voltage level grid, which is considered to be the slack 
node in this case. The electrical part of the CHP system is 
modeled as a synchronous generator. The PV systems and 
BSS are connected to the modelled grid via ideal average 
model inverter with neglected switching. The control 
structures of these systems are modeled twofold. High level 
controllers are responsible for obtaining new set-points for 
active power, reactive power, frequency, voltage, 
characteristic droops. These controllers operate with higher 
time constants and are not suitable for fast control of the 
inverters. For such a control the low level controllers are 
used. In case of CHP these are engine governor and AVR 
with additional PI controllers. For inverter based systems 
these are only droop controllers since the inverter models do 
not contain valves. 

B. Architecture of the multi-agent system 
The high-level controllers are implemented as agents. 

Each DER system described in VI.A has one agent assigned. 
The agents communicate with low-level controllers to get 
measurements and to send back set-points. The PV agent 
requires irradiation and temperature measurement in order to 
be able to calculate current maximal possible active and 
reactive power based on the model of the PV-panel and 
inverter constraints stored by the agent. The BSS agent  
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Fig. 8. Representation of the simulated power system 

receives the value of SoC estimated by the low-level 
controller. Similarly to PV agent, the BSS agent estimates 
maximal possible active and reactive power which the 
system could provide for a given time if the grid operator 
would require doing so. The CHP agent does not consider 
fuel consumption and the only measurements is the angular 
velocity of the rotor and terminal voltage, mainly for sake of 
island operation. Additionally there is one more agent 
associated with the switch and responsible for keeping the 
power flow over the HV/MV transformer at the expected 
level. This agent is superior to the rest. The switch agent has 
access to the measurements of active power, reactive power, 
frequency and voltage on both sides. If the power flow varies 
from the scheduled it can require other agents to provide 
their current constraints and finds the new set-points which 
satisfy the requirements. 

C. The framework consideration 
Five agents were implemented in the described co-

simulation, one for each DER and one for the switch. The 
TCP/IP client block had in this case 43 input and 18 output 
signals. The model in Simulink was simulated using variable 
step solver and the electric part was modeled in phasor 
domain. The sample time of the client block was set to 1s. 
Each of the five agents had periodic behaviour simulating 
specific measurements. A typical example of implementation 
of the reactive behaviour was estimation of the current 
constraints performed by DER agents on request of the 
switch agent. 

VII. SUMMARY 
This paper presents a framework for integrated 

simulation environment for investigation of MAS in smart 
grid applications. It consists on interfacing a multi-agent 
platform developed within JADE with a model developed in 
MATLAB/Simulink by means of TCP/IP communication. 
The framework was originally developed for and tested with 
a power system model, however after minor adjustments can 
be applied to a co-simulation between JADE and Simulink in 

any area. Additional benefit of using TCP/IP communication 
for exchanging data between both environments is fact that 
the Simulink model can be executed on separate machine 
and MAS can run on distributed platform, which may 
significantly increase the performance. Presented example of 
the implementation proved usefulness of the developed 
solution. 

For a successful implementation a set of general rules 
which constitute the framework have to be followed: 

• Every agent who requires signals exchange with 
Simulink has to report this fact when registering at 
DF agent. 

• Every agent who has time scheduled tasks (periodic 
behaviour) has to report a need of communication 
with Simulink no matter if exchanges any signals. 

• All the signals exchanged between JADE and 
Simulink are alphabetically sorted by the server agent 
according to the agents’ names given by the user. 
Proper distribution of the signals in Simulink is up to 
the user. 

• Each behaviour in the used MAS has to implement 
the return confirmation principle. No matter if the 
responsible agent communicates directly with the 
server agent. 

• The execution period of the periodic behaviour 
should correspond to the sample time of the TCP 
client block in Simulink. 

• For the variable step solver a maximal step size 
should be defined. 
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