
Integrated Simulation Environment for Investigation
of Multi-Agent Systems in Smart Grids

Applications

Manswet Banka
Institute of Power Transmission and High Voltage Technology

University of Stuttgart
Stuttgart, Germany

manswet.banka@ieh.uni-stuttgart.de

Krzysztof Rudion
Institute of Power Transmission and High Voltage Technology

University of Stuttgart
Stuttgart, Germany

rudion@ieh.uni-stuttgart.de

Abstract— This paper presents a framework for simulation
environment for modelling and testing smart grids controlled
by multi agent systems. The environment is based on the co-
simulation approach and consists of MATLAB/Simulink,
where the power grid part is modelled, Java Agent
DEvelopment framework, where the multi-agent system is
programmed, and the interface between these two based on
TCP/IP communication. The interface is designed to be general
and it can be used also for purposes other than power systems
application. Structure, integration within both ends, and
functioning of the interface is the main focus of this paper.

Keywords— co-simulation, multi-agent systems, JADE,
MATLAB/Simulink, Smart Grids

I. INTRODUCTION
Nowadays the power systems tend to be increasingly

decentralized and, therefore, there is a growing amount of
devices which should be monitored and controlled, possibly
in real time, in order to ensure stable and efficient operation
of the system. State of the art in designing and optimizing of
such systems is by means of simulations. There are different
tools used to model power system domain and one of it is
MATLB/Simulink with its Specialized Power Systems
library [1]. In the control domain the multi-agent systems
(MAS) have been gaining attention as the appropriate way of
automated control of decentralized systems. A well-known
environment for developing such platforms is Java Agent
DEvelopment framework (JADE) [2]. There are however
very limited options available for co-simulations between
power system model and MAS. This paper presents the
developed framework for integrating MATLAB/Simulink
with JADE within one simulation environment.

The interfacing of JADE with MATLAB/Simulink is not
straight forward. Reference [3] describes a tool which was
designed for the data exchange between JADE and Simulink
but the project is not actively supported anymore and the
integration into newer Simulink’s versions is troublesome.
There are approaches like [4, 5], where JADE is interfaced
with MATLAB but not Simulink. The authors in [6]
proposed similar concept to the presented in this paper of
interfacing JADE with Simulink using TCP sockets, however
their design differs, since they proposed the communication
over multiple TCP client-server connections. In this paper
the connection is centralized and realized by only one TCP
client on the Simulink model’s side and only one TCP server
on the JADE’s side. One of the requirements for the
framework is that the TCP client and server should be
flexible and accept different number of agents exchanging
data with Simulink and different number of exchanged
signals without the need of additional connections. Although

the framework was primary developed for application in
power systems area its general character allows
implementations in different areas as well.

II. OVERVIEW OF THE ARCHITECTURE
The proposed solution consists on interfacing two

separated simulation environment each dedicated to different
domain. One of them is MATLAB/Simulink with its
Specialized Power Systems library where the power system
domain is modeled. The other one is JADE with the
representation of the upper level control realized by agents.
The clue is the bidirectional exchange of data in a
systematized manner throughout the duration of the
co-simulation. Although Simulink provides components
allowing the user to log and observe data during a
simulation, the external access is not straight forward. One of
the possible and effective solutions is implementing a
communication component of a standard protocol [6,7]. In
this case the TCP/IP protocol is chosen, where the client is
on the Simulink’s side and server on the JADE’s side. In the
presented architecture the client collects signals within
Simulink model which can represent different measurements
required for taking control actions and sends them to the
server at regular intervals. The server receives signals from
the client and distributes them among existing agents, Fig. 1.

From the platform point of view the TCP server agent is a
standard agent and communicates with others using provided
in JADE means of communication – sending the Agent
Communication Language (ACL) messages [5]. The block
TCP client exchanges the data with other modeled blocks
using standard Simulink signals connections. Although there
can be different amount of blocks and agents on both sides,
and even agents communicating with Simulink but not

Agent 1

Agent 2

Agent N

Agent
TCP server

JADE

Block
TCP client

Simulink

Block 1

Block 2

Block N

ACL Messages Simulink/SPS Signals

Simulation
time

TCP/IP

Fig. 1 Overview of the developed co-simulation architecture.

having its equivalent as a Simulink block, there is always
only one server and one client who concentrate the data and
manage their exchange. The crucial role plays “Simulation
time” block on the Simulink side, Fig. 1, since it is the source
of reference time for agents’ operation and synchronization
as described in section V.

III. TCP CLIENT IN SIMULINK
The TCP client is implemented on the Simulink side of

the interface. Although there are ready-to-use blocks for
sending and receiving over TCP/IP protocol provided in
Simulink’s libraries, the use of these in the proposed
application requires special consideration and adjustments
regarding time synchronization and processing of incoming
and outgoing signals. Therefore, a customized C-
programmed S-function block was used for this purpose [1].
The core functionality is owed to Windows’s Winsocks,
which provides C-language API and mechanisms for TCP
communication. The main tasks of this block can be
summarized:

• Establishing connection with the server,

• Collecting and sending time stamp to the server at
regular time intervals specified by the user together
with the current values of the Simulink signals,

• Receiving the co-simulation start flag and the set
points from the agents,

• Providing the signals to the proper Simulink blocks.

Each Simulink block’s code consists of numerous
routines, which are called at different stages of the model
execution. The most important ones for the implementation
of the TCP client block are depicted in Fig. 2 together with
the stages of the TCP connection.

The function mdlInitializeConditions is called only once
to initialize the blocks parameters. In mdlStart the TCP
socket is being opened and the connection to the server is
established. This function is also called only once, at the
beginning of the execution, which in turn means that the
TCP connection remains open during the whole time of the
co-simulation. The mdlOutputs function is called at every

execution of the block. In its body the main part of data
exchange takes place, Fig. 3. At the beginning of the
simulation the block is awaiting the signal to start the co-
simulation. Once the flag is received the Simulink time and
signals are sent to the server. The block is now waiting for
the response of the server and is blocking the execution of
the rest of the model. Thanks to such a solution, which
prevents Simulink engine from further calculations, there is
no risk of performing them with outdated set points.

The TCP client block, presented in Fig. 4, has two inputs
and two outputs. The first input is foreseen for the clock
providing the simulation time and is separated from other
input signals. This signal is used by the client to determine
the time stamp sent to the server. The second input takes all
remaining signals, which should be sent to the agent
platform. The ordering of these remaining signals has to be
done manually by the user. On the other end of the interface
the signals are alphabetically sorted according to the agents’
names. However it is up to the user how the n-th signal of a
specific agent will be interpreted by him. Therefore, the same
ordering must be preserved in Simulink model. The first
output is dedicated to the signal indicating the beginning of
the co-simulation. Such a feature is relevant especially in
case of bigger models with many state variables, when it is
not always an easy task to determine the initial conditions for
starting the model in a steady state. Therefore, when the user
starts the Simulink model he can wait until the states
converge to the steady state and only then start the
co-simulation from the user interface in JADE. This event
will be communicated to the TCP client block in Simulink
and then propagated in the Simulink model as the mentioned
flag signal. The block can be used with models of any size
and complexity. Depending on these two factors and
additionally the type of the solver and its step size the
execution of the model might be very fast making this
impossible for the user to react and start the co-simulation
after starting the Simulink model. For this reason the TCP

mdlOutputs (SimStruct *S, int_T tid) {...}

Co-simulation
flag

0

1

Send the current time stamp

Send the current signal values

All set points
received?

Set the current set points

Time delay

return

Y

N

mdlInitializeConditions (SimStruct *S) {...}

mdlStart (SimStruct *S) {...}

mdlOutputs (SimStruct *S, int_T tid) {...}

mdlUpdate (SimStruct *S, int_T tid) {...}

mdlDerivatives (SimStruct *S) {...}

mdlTerminate (SimStruct *S) {...}

t > tmax

TCP Connection
started

TCP Connection
closed

TCP
Communication

executed

Si
m

ul
in

k
tim

e

N

Y

Fig. 3 Flow chart of the code responsible for the communication in the
TCP/IP client block. Fig. 2 The most important routines of a S-function in C-code.

client block implements an artificial time delay during each
execution, which can be easily adjusted by the user. For the
more complex systems, whose execution is very slow
anyway, the time delay can be set to 0 and for less complex
and fast executed systems it can be increased to required
number of seconds. As soon as the co-simulation was
intentionally started by the user, the delay is omitted.

The Simulink’s solver engine allows definition of time
intervals at which particular blocks should be executed. By
default it is each simulation step. However, it is not
reasonable from the performance perspective and would
slow down the co-simulation significantly, if the exchange of
the data took place with resolution of milliseconds or less,
depending on the modeled systems and its simulation step.
Therefore, it is up to the user to specify the execution
intervals by adjusting the “Sample time” parameter in the
block’s mask (tsamp). In the performed co-simulations value
of 1s was used, which means that the communication took
place and, therefore, the signals were updated every second
of the Simulink time. Thanks to the Simulink scheduler it
also applies to the variable step solvers.

IV. AGENTS AND TCP SERVER IN JADE
An inseparable feature of an agent that has to be realized

in the presented framework is its ability of interacting with
the environment. This can be other agents, data bases, human
machine interface, sensors, etc. For the communication with
other agents JADE provides a messaging system based on
TCP/IP where ACL messages can be exchanged. This is a
very convenient method of exchanging information between
agents within the platform, since the implementation details
are hidden from the programmer. In turn the TCP server is
responsible for the sensors-like signals. It receives them from
the client in Simulink model and then redistributes among
agents using ACL messages. The server is implemented
within a JADE agent, whose tasks can be summarized:

• Listening to the incoming client connection,

• Sending the co-simulation start flag to the client,

• Receiving the time stamp and current values of the
Simulink signals. Redistributing them among the
agents,

• Collecting the new set-points from the agents and
sending to the client.

An important aspect to be considered is the way how the
agents perform their tasks. In JADE the routines required to
solve the tasks are defined in Behaviour classes. Among
others there are:

• generic Behaviour

• OneShotBehaviour

• CyclicBehaviour

which differ from each other in their lifetime.
OneShotBehaviour is executed only once, whereas the
CyclicBehaviour is executed in a cyclic manner unless the
programmer foresaw calling its killing routine. An object of
the generic class Behaviour is destroyed automatically as
soon as the tasks are completed, which may be done in
several steps. In this framework another differentiation of the
behaviour is proposed for the sake of time synchronization
between Simulink and JADE as explained in section V:

• Periodic behaviour – performed at regular time
intervals, e.g. measurement of a monitored parameter.
It is implemented as generic Behaviour class.

• Reactive behaviour – performed only after request
from other behaviour, within the same or different
agent, e.g. providing specific data from a data base. It
is implemented as CyclicBehaviour class.

• CyclicTCPBehaviour – used for communication
between an agent and the TCP server agent.
Implemented as CyclicBehaviour class.

The TCP server agent communicates with other agents via
their CyclicTCPBehaviour. Hence, each agent
communicating with Simulink in the proposed framework
has to have an object of this class. This behaviour holds a list
of all agent’s periodic behaviour objects together with their
execution period and the time of the next execution.
Additionally, in order for an agent to be recognized by the
server agent, it has to register the necessity of TCP
communication at Directory Facilitator (DF) agent during
creation [9].

For the server agent it is not important how often
particular agents need the access to the signals and it updates
all the values each time it receives them from the client,
which means every tsamp specified by the user in the TCP
client block.

As already mentioned in section III the signals exchange
between the server and the client are sorted alphabetically
according to the agents’ names given by the user. Based on
the number of signals for each type of agent predefined in a
configuration file, data structures of appropriate size are
created for signals incoming from Simulink and set points
out going from JADE to Simulink model.

The server TCP agent is a typical JADE agent which
means that it has a dedicated Java thread for itself but for the
sake of parallel execution of the tasks at the MAS platform
and listening to the request incoming from Simulink it runs a
separated thread for this purpose.

V. TIME SYNCHRONIZATION
Multithreading is a desired and inseparable feature of

MAS. It is a challenge for co-simulation however. The time
synchronization between agents’ operation and the Simulink
model execution is a main concern of the framework. As
already signalized in section III depending on the chosen
solver and size and complexity of the model the execution
time may significantly vary. The agents developed in JADE
run in real time according to the operating system’s clock.
The lack of common time source is emphasized especially
when the agents need to perform their tasks at regular time
intervals or need to analyze the time trends of measured
signals. This issue is solved by using the Simulink time as

Fig. 4 Representation of the TCP client in Simulink model.

Agent 1

Block
TCP client

Agent
TCP server

Power
system
model

Agent N

Simulink time

Operating
system time

Power system
computation

Sending
current signals

Receiving current
set points

Receiving
current signals

Sending current set
points

Inputs
processing

Outputs
update

Inputs
processing

Outputs
update

Behaviour
execution

Behaviour
execution

Behaviour
return confirm.

Outputs update
confirm.

Power system
computation

Fig. 5. Sequence of events during communication between JADE and Simulink.

the reference time and by the “return confirmation” between
behaviour. Simulink time synchronization The Simulink
model time is chosen to be the one to synchronize with. In
the Fig. 5 one step of the co-simulation within presented
framework is depicted in a schematic way. As per Fig. 2 the
co-simulation was already started. When Simulink engine
scheduler calls the TCP client block it sends over TCP/IP the
time stamp and current values of Simulink signals to the
server agent and is waiting for the server’s response,
blocking further computation in Simulink. The server
redistributes the values among specific agents. Now the
agents compare the current simulation time with their
internal list of periodic behavior and decide whether or not to
start them. If there is no scheduled behaviour for this period,
the agent sends a message to the server agent in order to
confirm that all its behaviour returned successfully. The
confirmation is a vital part of the coordination from the
server agent perspective. Without this it would be
troublesome to ensure that no outputs would be updated after
sending the values back to Simulink. In case an agent needs
to perform some scheduled tasks all of them are required to
send the confirmation back to the CyclicTCPBehaviour
object after completing their actions, which is part of the
“return confirmation” principle described in the next
subsection. When all the considered agents confirmed
successful return of their periodic behaviour, the TCP server
agent requires them to submit the final values of the set
points. Only after receiving responses from all the agents the
server agent sends the current set points to the TCP client
who should update its outputs with these values. The next
simulation step in Simulink begins.

A. Behaviour return confirmation
All behaviour regardless if periodic or reactive must send

a success confirmation to the calling behaviour, Fig. 6. This
is an important difference in comparison to the native JADE

framework, where behaviour normally completes without
such a notification. In this framework it is called “return
confirmation” principle and is based solely on ACL
messages. The undeniable disadvantage of this principle is
the fact that it limits the parallelization of the computation
provided by a multithreaded environment, since each
behaviour needs to wait for the end of its subbehaviour.
Nonetheless, it helps ensuring that the results of all
computations done by the agents would be sent to Simulink
simultaneously and for the proper simulation instant,
although the computations can differ in execution time
greatly. An agent has to confirm the return only of all his
own periodic behaviour to the server agent. The reactive
behaviour is not considered here explicitly because they may
be called on a request from another agent, RB 1 of the Agent
N is called by PB n of the Agent 1 – Fig. 6. This means that
an agent can send the confirmation to the server and at least
one of its reactive behaviour may still not have returned
because is dealing with providing some services to another
agent. In the case like in Fig. 6 the reactive behaviour of the
Agent N is implicitly considered as subbehaviour of a
periodic behaviour PB n of an Agent 1. In general the
behaviour dependencies can be summarized:

• Periodic behaviour is created within
TCPCyclicBehaviour according to the time schedule.
They have to confirm the successful end of operation.

• Reactive behaviour (RB) may be created at any
moment and not only by agents communicating with
the server. They have to confirm the successful end of
operation to the requesting behaviour.

• Periodic behaviour (PB) does not communicate with
other periodic behaviour. They may be self-sufficient
and not need services from other behaviour, PB n of
Agent N, or communicate with reactive behaviour

Fig. 6. Dependencies and communication between behaviour within the
platform.

within one agent or not, RB i of Agent 1 vs. RB 1 of
Agent N.

• Periodic behaviour may be designed to communicate
only with other periodic behaviour, RB 2 of Agent 1.

• Reactive behaviour can call subsequently other
reactive behaviour but eventually only the return of
the initial periodic behaviour must be confirmed to
the server.

On the one hand the implementation of the return
confirmation principle allows coordinating the co-simulation
but on the other the system following such a principle differs
from the reality since the measurements as well as set points
are captured and set with exact the same time stamp
(although some of the values might be used by the agents
less frequently). However at the initial stages of developing
MAS-based new control strategies and of proves of concept
such a feature is not a vital issue.

B. Simulink’s variable step solver
Simulink model can be computed using one of the

implemented fixed or variable step solvers. It is not possible
to arbitrary decide which solver is superior and for each
model a proper one has to be chosen. A variable step solver
has the advantage of dynamic adjustment of the step size
according to the changes in model’s states. It can accelerate
when there are only small changes and reduce the step when
states change rapidly. As described in III the TCP client
block is not executed at every Simulink step but the solver
takes care of scheduling the steps so that this block is
executed at the sample time defined by the user. However,
the process of choosing the suitable step size by a variable
step solver may cause issues in this particular application.
The solver monitors the tolerances of the states’ changes and
in case of violation due to a rapid unexpected change in one
of the states steps back and repeats the computation with a
smaller step. It can happen that it will cause the client to
execute more than once for the same simulation instant. Such
a case is illustrated in Fig. 7. The TCP client is executed
whenever Simulink time is equal to multiple of tsamp. The
first execution for time tsim+tsamp takes place for tos+2 but due
to violated maximal tolerance the Simulink time is put back

Fig. 7. Influence of the model state's tolerance on the simulink time
depending on the time step. Circles represent values of model state’s
tolerance, triangles values of Simulink time.

and with smaller step reaches the value tsim+tsamp again at
tos+6. It could be problematic when an agent manipulates
some data in external places and needs to do this in time-
linear manner. On the other hand multiple performances of
the whole chain for the same simulation step would slow
down the co-simulation. Therefore, an additional check in
the server agent was implemented in order to control the time
stamp received from the client and to execute the cascade
only, if the received value is greater than the last one.
Additionally the user should consider definition of the
maximal step size used by the variable step solver.

VI. SMART GRID CO-SIMULATION
The developed framework was used to design a

multi-agent control system for controlling the operation of an
active power grid. The agents are responsible for automated
control of the MV grid to provide flexibilities at the HV/MV
connection point.

A. Model of the power system
The modeled power system is based on the CIGRE MV

European test system with slight adjustments [7]. Only one
feeder is considered in the model, Fig. 8. Furthermore, there
are additional distributed energy resources (DER) placed at
MV level. One CHP is connected at node 1, a battery storage
system (BSS) at node 6 and photovoltaic systems at node 5
and 9. There is also a power switch connecting the grid to the
higher voltage level grid, which is considered to be the slack
node in this case. The electrical part of the CHP system is
modeled as a synchronous generator. The PV systems and
BSS are connected to the modelled grid via ideal average
model inverter with neglected switching. The control
structures of these systems are modeled twofold. High level
controllers are responsible for obtaining new set-points for
active power, reactive power, frequency, voltage,
characteristic droops. These controllers operate with higher
time constants and are not suitable for fast control of the
inverters. For such a control the low level controllers are
used. In case of CHP these are engine governor and AVR
with additional PI controllers. For inverter based systems
these are only droop controllers since the inverter models do
not contain valves.

B. Architecture of the multi-agent system
The high-level controllers are implemented as agents.

Each DER system described in VI.A has one agent assigned.
The agents communicate with low-level controllers to get
measurements and to send back set-points. The PV agent
requires irradiation and temperature measurement in order to
be able to calculate current maximal possible active and
reactive power based on the model of the PV-panel and
inverter constraints stored by the agent. The BSS agent

Communication with agents behaviour

Server agent

Communication with the
server agent behaviour

Agent 1

PB 1 PB 2 PB n

PBP

RB 1

RB 2

RB i

RBP

Communication with the
server agent behaviour

Agent N

PB 1 PB 2 PB n

PBP

RB 1 RB 2

RB i

RBP

M
od

el
 st

at
e‘

s
to

le
ra

nc
e Sim

ulink
tim

e

OS time
tos tos+1 tos+2 tos+3 tos+4 tos+5 tos+6

tsim

tsim+tsamp

tolmax

Fig. 8. Representation of the simulated power system

receives the value of SoC estimated by the low-level
controller. Similarly to PV agent, the BSS agent estimates
maximal possible active and reactive power which the
system could provide for a given time if the grid operator
would require doing so. The CHP agent does not consider
fuel consumption and the only measurements is the angular
velocity of the rotor and terminal voltage, mainly for sake of
island operation. Additionally there is one more agent
associated with the switch and responsible for keeping the
power flow over the HV/MV transformer at the expected
level. This agent is superior to the rest. The switch agent has
access to the measurements of active power, reactive power,
frequency and voltage on both sides. If the power flow varies
from the scheduled it can require other agents to provide
their current constraints and finds the new set-points which
satisfy the requirements.

C. The framework consideration
Five agents were implemented in the described co-

simulation, one for each DER and one for the switch. The
TCP/IP client block had in this case 43 input and 18 output
signals. The model in Simulink was simulated using variable
step solver and the electric part was modeled in phasor
domain. The sample time of the client block was set to 1s.
Each of the five agents had periodic behaviour simulating
specific measurements. A typical example of implementation
of the reactive behaviour was estimation of the current
constraints performed by DER agents on request of the
switch agent.

VII. SUMMARY
This paper presents a framework for integrated

simulation environment for investigation of MAS in smart
grid applications. It consists on interfacing a multi-agent
platform developed within JADE with a model developed in
MATLAB/Simulink by means of TCP/IP communication.
The framework was originally developed for and tested with
a power system model, however after minor adjustments can
be applied to a co-simulation between JADE and Simulink in

any area. Additional benefit of using TCP/IP communication
for exchanging data between both environments is fact that
the Simulink model can be executed on separate machine
and MAS can run on distributed platform, which may
significantly increase the performance. Presented example of
the implementation proved usefulness of the developed
solution.

For a successful implementation a set of general rules
which constitute the framework have to be followed:

• Every agent who requires signals exchange with
Simulink has to report this fact when registering at
DF agent.

• Every agent who has time scheduled tasks (periodic
behaviour) has to report a need of communication
with Simulink no matter if exchanges any signals.

• All the signals exchanged between JADE and
Simulink are alphabetically sorted by the server agent
according to the agents’ names given by the user.
Proper distribution of the signals in Simulink is up to
the user.

• Each behaviour in the used MAS has to implement
the return confirmation principle. No matter if the
responsible agent communicates directly with the
server agent.

• The execution period of the periodic behaviour
should correspond to the sample time of the TCP
client block in Simulink.

• For the variable step solver a maximal step size
should be defined.

REFERENCES

[1] https://de.mathworks.com/help/physmod/sps/specialized-power-
systems.html

[2] http://jade.tilab.com/
[3] Ch. R. Robinson, P. Mendham, T. Clarke, “MACSimJX: A Tool for

Enabling Agent Modelling with Simulink Using JADE”, Journal of
Physical Agents, vol. 4, No. 3, September 2010

[4] C. J. Bankier, “GridIQ – A Test Bed for Smart Grid Agents”,
Master’s thesis, University of Queensland, 2010

[5] R. Roche, S. Natarajan, A. Bhattacharyya, S. Suryanarayanan, “A
Framework for Co-simulation of AI Tools with Power System
Analysis Software”, 23rd International Workshop on Database and
Exper Systems Applications, September 3-7 2012, Vienna, Austria

[6] J. Gómez-Gualdrón, M. Vélez-Reyes, “Simulating a Multi-Agent
based Self-Reconfigurable Electric Power Distribution System”, 2006
IEEE COMPEL Workshop, July 16-19 2006, NY, USA

[7] M. Sysel, “MATLAB/Simulink TCP/IP communication”,
Proceedings of the 15th WSEAS international conference on
Computers, July 2011, pp. 71-75

[8] https://docs.microsoft.com/en-us/windows/desktop/winsock/about-
winsock

[9] F. Bellifemine, G. Caire, D. Greenwood, “Developing Multi-Agent
Systems with JADE”, John Wiley & Sons, Ltd, 2007

[10] K. Rudion, A. Orths, Z.A. Styczynski, K. Strunz, “Design of
benchmark of medium voltage distribution network for investigation
of DG integration”, 2006 IEEE Power Engineering Society General
Meeting, 18-22 June 2006, Montreal, Canada

1

2

3

4

5 11

10 8
9

7

6

CHP

PV

PV
BSS

	I. Introduction
	II. Overview of the Architecture
	III. TCP Client in Simulink
	IV. Agents and TCP Server in JADE
	V. Time Synchronization
	A. Behaviour return confirmation
	B. Simulink’s variable step solver

	VI. Smart Grid Co-Simulation
	A. Model of the power system
	B. Architecture of the multi-agent system
	C. The framework consideration

	VII. Summary
	References

