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 

Abstract-- This contribution proposes a method to analyze the 

capabilities of low voltage grids to meet the demands of 

additional loads due to electric mobility. Probabilistic load 

models for both the domestic and electric vehicle loads are 

developed to give insight into the stochastic nature of load 

distribution and voltage bands. The results not only provide the 

maximum voltage deviations, but their probability of occurrence 

during a given period of time. With this information, a 

recommendation for future grid planning can be developed, 

which takes into account the increasing load caused by electric 

mobility. Furthermore, a load management system is proposed to 

reduce maximum load thus avoiding costs for increasing feeder 

capacities. 

 
Index Terms— electric vehicles, load flow, load modeling, 

power system planning, probability density function, statistical 

analysis, voltage control 

I.  INTRODUCTION 

The upcoming wide spread distribution of electric vehicles 

(EV) will provide new challenges for power grids as the 

demand for energy will increase. This raises the question, 

whether it is possible for the current grid to meet the new 

requirements without major investments. On the other side, 

electric mobility may have mitigating effects on the grid peak 

load as well, because battery storage in EV may be used to 

balance loads between peak and base load times. Renewable 

energies, which not necessarily supply energy when it is 

needed, will intensify the need for load balancing.  

For future grid planning, it is necessary to know what impact 

electric mobility will have especially on distribution grids. The 

most important issue is that - assuming no charge control - 

many vehicles may be charged simultaneously in evening 

hours after work. This is exactly the time, where the grid is 

already at its peak load. 

This paper analyzes under which conditions there will come 

up grid constraints in near future due to electric mobility and 

when they are to be expected. This is achieved by applying 

certain scenarios for future development of EV and simulating 

a typical low voltage grid.  

In a first step, load models are developed for domestic loads 

and electric vehicles to be able to represent their varying 

nature correctly in a load flow calculation. These load models 
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can either be based on deterministic standard load profiles or 

probabilistic loads and are discussed in section II. The 

difference and increase in detail due to probabilistic load 

models in load flow calculation is analyzed in section III. 

Here, a detailed view on the probability of occurrence of line 

loadings and voltages at a certain grid node is given. Section 

IV analyzes the effects of electric mobility on future grid 

planning and the increase in peak load demand on distribution 

feeders for a low number of households and vehicles. 

II.  LOAD MODELING 

To be able to simulate a low voltage grid, load models of 

different loads in that grid are necessary. This includes 

commercial, domestic and industrial loads as well as the load 

of electric vehicles. This section describes the models used for 

the assessment of the impact on low voltage grids of electric 

vehicles. 

A.  Domestic Load 

Domestic load models are necessary for grid calculation and 

planning and are state of the art. They are used, for example, 

for sizing transformers and power lines. This subsection will 

show possibilities for domestic load models. 

 

    1)  Load Profile 

Load profiles are used by energy suppliers to estimate the 

hourly demand of their customers, whose energy consumption 

is usually measured on a yearly basis. This hourly data is used 

to determine the supplier obligation on retail markets, which 

must be covered by the supplier. These profiles are scaled to 

have an energy consumption of 1,000 kWh per year. There is a 

profile for different load types (e.g. domestic, agricultural, 

commercial loads), differentiated each season and 3 types of 

weekdays (workdays, Saturday and Sunday) [1]. In Fig. 1 

three winter profiles for domestic loads are shown.  

It becomes apparent, that the peak in winter is on workdays at 

about 6:30 pm. However, the peak on Saturdays at 12:00 am is 

almost as high.  

As mentioned, these profiles are used to estimate the 

contribution of a large number of similar customers to the 

system load curve. For a collection of customers, they need to 

be scaled accordingly to the customers‟ energy consumption. 

To fit the calculated maximum load value to the measured 

peak load data at urban MV/LV grid transformers, for 

example, coincidence factors are applied, which describe the 

ratio of the coincident, maximum demand of two or more 

loads to the sum of their noncoincident maximum demand for 

a given period. It is less than or equal to one. Load profiles 

help to give an overview of the situation in a certain grid.  
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Fig. 1.  Domestic standard load profiles for households in winter. 

 

    2)  Probabilistic Load 

For an in depth analysis of voltage bands, it is necessary to 

have a decent knowledge of the distribution and statistical 

nature of the load. When looking at a small number of 

households and EVs, the momentary load may differ a lot 

compared to the averaged load profiles. To account for this, 

load models of individual households and of small groups of 

these loads are required, e.g. a certain number of households at 

one feeder. A probabilistic approach for a domestic load 

model is investigated in [2], where a probability density 

function is used to describe the nature of the load to a certain 

time step, which can be acquired of measurement data. Fig. 2 

shows an exemplary histogram of the load distribution of 

measured domestic load data at 7:00 pm on a workday in 

winter. The loads are average values for 15 minute time 

intervals. The data was collected in the scope of a publicly 

funded project within the German E-Energy Research 

Program [3]. The measurement data is used throughout this 

paper. 

 
Fig. 2.  Histogram of measured domestic load data at 7:00 pm with mean and 

probability density function fit. 

 

The marked mean of the load distribution would be the value 

of a corresponding load profile. Evidently, much higher loads 

may occur locally on a feeder than given by a standard load 

profile, as the figure shows. Furthermore, the measured data 

can be fitted by different distribution functions. In this case, 

the log-normal distribution fits best, which means that the 

logarithm of the occurring loads is normally distributed. The 

probability density function of the log-normal distribution can 

be described by 

        
 

     
  

        
            

In Fig. 2, the parameters for the fit at 7:00 pm are   
        and           . However, other publications [4] 

show that for different measurement data of household loads 

often the Beta or Weibull distribution yields a better fit. 

The fitted distribution can now be used for voltage drop 

calculations on low voltage and medium voltage feeders [5], 

[6] or for a probabilistic Monte Carlo load flow calculation.  

B.  E-Mobility Load 

While the load profile for households is well known and 

commonly used for grid planning, the load profile for electric 

vehicles needs to be derived based on plausible considerations. 

The load of electric vehicles is modeled under the assumption 

that in the starting phase of their market entry they mainly will 

be charged at home. It is assumed that the car starts charging 

immediately when arriving at home. However, this may 

change with the introduction of a load management system, 

which may alter the load profiles. Furthermore, assumptions 

need to be made regarding the charging power and grid 

penetration of electric mobility. 

 

    1)  Probabilistic Load 

By analyzing the mobility behavior of today‟s car owners, one 

can assess a charging profile by taking into account the arrival 

time at home and an average daily traveled distance for the 

amount of energy, which needs to be charged, like depicted in 

Fig. 3. 

 
Fig. 3.  Description of the algorithm for creation of load profiles for electric 
vehicles. 

 

First of all, the assumptions regarding charging power and 

degree of electrification play a major role for the generation of 

synthetic loads. For Germany, the government is looking to 

have one million electric vehicles on the road by 2020 and 

over five million by 2030 [7]. That represents roughly 2.5% of 

the total car population for 2020 and 12.5% for 2030 

respectively. Regarding the charging power, there are different 

possibilities of charging. When the car is charged at a normal 

plug, 1 phase protected with a 16 A fuse at 230 V, the vehicle 
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can be charged with up to 3.7 kW. Table I shows the upper 

limits for different types of connections. 

 
TABLE I 

MAXIMUM CHARGING POWER FOR ELECTRIC VEHICLES IN GERMANY  

Charging Current 1x16 A 3x16 A 3x32 A 3x63 A 

Max. Charging Power 3.7 kW 11.0 kW 22.1 kW 43.5 kW 

 

How fast the demand for charging power will rise is difficult 

to say. Charging power also may be different for charging at 

home and for rapid charging at a service station, if this is 

acceptable for reduced charging times. In this paper, it is 

assumed that a rated power of 11 kW should be supplied by a 

common domestic 3 phase grid connection. 

Beside this, it is necessary to know when electric vehicles will 

arrive at home and will usually be charged, considering that 

there is no load management system in place in the starting 

phase of electric vehicles. For EVs, the time of arrival of a 

single car is a stochastic variable following the probability 

density function given by the time of arrival of the total car 

population. These data can be acquired from survey data, 

which was collected in [8]. In this survey, German households 

were monitored with regard to their mobility behavior. Fig. 4 

shows the time of arrival after the last trip of the day. Most 

people‟s last trip of the day ends at 6:00 pm and it is suspected 

that they arrive at home and would start to charge their electric 

vehicle. 

 
Fig. 4.  Probability density function of the arrival time after the last trip of a 
day with 5 minute sampling (survey data [8]). 

 

Beyond that, it is important for how long each vehicle will be 

charged. This is determined by the daily travelled distance and 

the energy consumption per kilometer, which is roughly 

estimated to be about 20 kWh/100 km. In [8] the households 

were asked for their daily travelled distance as well. These 

data can be fitted well by the generalized Pareto distribution 

function. The daily travelled distance is shown in the first row, 

while the percentage of occurrence is shown in the second row 

of Tab. II. In the third row, the values of the fitted generalized 

Pareto distribution function are shown and it becomes 

apparent, that the deviations are negligible. The generalized 

Pareto distribution function is described by 

          

 
 
 

 
 
     

      

 
 

 
 
 

        

        
     

 
         

  

 

with the parameters:                    and    . 

 
TABLE II 

PARETO FIT OF SURVEY DATA OF DAILY TRAVELLED DISTANCES 

Distance in 
km 

0-1 1-10 10-
20 

20-
40 

40-
65 

65-
100 

100-
200 

200
+ 

Survey in 

% 

3.5 24.3 18.0 20.9 12.9 8.7 6.7 4.5 

Pareto Fit 
in % 

3.5 24.6 17.9 20.6 12.8 8.6 7.9 3.3 

 

It is to be pointed out that Table II only includes distances 

above 0 km. 29.9% of the vehicle population is not moved per 

day. The average travelled daily distance of the 70.1% moving 

cars is about 50.1 km, the mean of the fitted Pareto function. 

With the help of the Pareto distribution fit, it is possible to 

draw specific values for the daily travelled distance, although 

the survey data have such a coarse resolution. 

Finally, with this information a probabilistic load for a single 

electric vehicle can be calculated like shown in Fig. 3 by 

following these steps: 

- draw a uniformly distributed random variable to 

decide, whether the vehicle is driving at all (only 

70.1% of vehicles are moved per day), 

- draw random variable accordingly to the PDF for the 

arrival time to set the starting time for charging, 

- draw random variable accordingly to the PDF for the 

daily travelled distance to know the necessary 

amount of energy for a fully charged battery. 

Therefore, the stochastically generated load for a single 

vehicle is rectangular: zero until the car arrives at home, at 

specified charging power for the time needed to recharge the 

battery and zero afterwards, when the battery is fully charged. 

This is assumed, although batteries reduce their charging 

power while reaching full charge. This is, because car 

manufacturers limit the cycle depth of vehicle batteries to 

about 20% to 80% state of charge to increase life time. In this 

range full charging power is feasible. 

The battery capacity is not separately taken into account. 

Instead the possible range is limited to 300 km. If a larger 

daily travelled distance is drawn, it is reduced to 300 km. This 

inherently limits the size of the battery to 300 km * 20 

kWh/100 km = 60 kWh. 
 

    2)  Load Profile 

Load profiles are only valid when considering large quantities 

of loads. When looking at a single load as probabilistic 

process, the load profile is the mean or the expected value of 

that process. However, the variance may be relatively high. 

Therefore, there may be a significant deviation of a single load 

to the load profile. Still, when looking at a large number of 

loads, the mean will be very close to the load profile. 

Based on the methodology of the precedent section, load 

profiles can be derived by repeating the described 

methodology to generate stochastic load profiles for a large 
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number of vehicles and calculating the average. Load profiles 

for different charging rates are shown in Fig. 5. 

 
Fig. 5.  Load profiles for electric mobility and different charging rates derived 

by the accumulation of synthetic probabilistic loads for single vehicles. 

 

The maxima of the load profiles occur between 6:00 and 7:00 

pm. With an increasing charging power, the peak shifts to 

earlier times and is a little higher. Interestingly, the maxima, 

especially from 22.1 kW to 43.5 kW, only increase a little 

while the charging power is doubled. This is, because faster 

charging results in less vehicles charging simultaneously. 

These profiles can be used for grid simulation and be applied 

for every vehicle. Although this causes the vehicles to have a 

load with a coincidence factor of 1, it yields sufficient accurate 

results for large aggregations of vehicles, e. g. when 

simulating medium voltage grids. What number of vehicles is 

necessary to be able to use a standard load profile instead of 

probabilistic single vehicle loads, is investigated in section IV, 

Fig. 9. There, we analyze how far the peak load of an 

increasing number of vehicles is apart from the standard load 

profile. 

C.  Combination of Domestic and Electric Vehicle Loads 

Electric vehicles will be mainly charged at home in the 

beginning. The number of vehicles is directly dependent on 

the number of households in a low voltage grid. In Germany, 

for example, there are 1.3 cars per household in rural areas and 

1.2 cars in urban areas [8]. By extending the algorithm 

described before, one can generate combined profiles for 

households and electric vehicles together. This can be 

achieved by drawing a random variable for the number of 

vehicles present at the currently looked at household. 

Furthermore, it must be decided randomly, whether the car is 

electric or not, depending on the degree of electrification. If it 

is electric, the process described earlier can be continued and 

the profile for the electric vehicle is added to the one of the 

households. 

Like this, a daily profile for, e.g. 5 households and 6 electric 

vehicles (electric and non-electric) can be generated under the 

assumptions of a certain charging power, a certain degree of 

electrification, a probability density function (PDF) for the 

daily traveled distance and a PDF for the time of arrival. 

Furthermore, a probability of a certain load on one feeder with 

a small amount of electric vehicles and households can be 

calculated. This will be elaborated in section IV regarding the 

consequences for future grid planning. 

III.  LOAD FLOW CALCULATION USING DIFFERENT LOAD 

MODELS 

For the analysis of low voltage grids, usually standard load 

profiles are used. Results of simulations with averaged load 

profiles show that - depending on the number of EV charged 

simultaneously - minor problems with transformer overload 

occur. The main problem, however, will be under voltage due 

to the increased load [9]. Especially regarding the results for 

voltage drop calculations, it is to be expected that the 

simulation with probabilistic load models will yield results 

with a much higher precision by taking into account the 

probability of coincidental loads locally and temporally at one 

feeder, for example. This is necessary, because the simulation 

with standard load profiles assumes a homogenization of loads 

and does not take into account local accumulations of electric 

vehicles at one feeder. 

The simulations were carried out using an urban low voltage 

grid within the city of Stuttgart, Germany. It consists of two 

800 kVA transformers feeding the grid, roughly 900 

households, 500 kW commercial load, 800 kW night storage 

heater load and 120 kW of minor loads like street lighting. 

The commercial, night storage and minor loads are 

implemented with standard load profiles due to the absence of 

measurement data, which would enable a probabilistic model. 

However, these loads are known to have a high coincident 

factor and therefore the improved model would only have 

negligible influence on further voltage drops. It is assumed, 

that there are roughly 1,080 vehicles present. Fig. 6 shows the 

results of different simulations. Three scenarios are depicted. 

The first is modeled without electric vehicles. The second and 

third assume 12.5% electric vehicles, while in the second 

scenario they were charged with 3.7 kW and in the third with 

22.1 kW. Each scenario was simulated using probabilistic load 

models and standard load profiles, represented by the two bars 

in Fig. 6. For each simulation, the maximum voltage drop ΔU 

from the urban grid transformer to the nodes is shown. There 

is only a slight decrease in voltage drop when simulating 

without e-mobility. However, considering e-mobility, the 

voltage drop with probabilistic load models is a lot higher. 

 
Fig. 6.  Maximum voltage drop simulating with probabilistic loads and 

standard load profiles with 12.5% electric vehicles. 
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 5 

 

Looking at this situation in detail, it can be found that the 

voltage drop for probabilistic loads depicted in Fig. 6 is 

possible but does not occur very often. It is the maximum drop 

that occurred during the simulation. Fig. 7 shows the occuring 

voltages at an exemplary node in more detail. 

 
Fig. 7.  Exemplary node voltages resulting from a load flow calculation using 

probabilistic load models. 

 

At this node, the mean voltage is at 0.959 p.u., although it 

becomes apparent that the occuring voltages are widely spread 

by about ±0.15 p.u. and twin peaked. All voltage values are 

given referring to a value of 1.0 p.u. at the LV bus of the 

MV/LV transformer substation. To reach a reasonable 

conclusion taking into account the probability of occurrence of 

loads and voltages, one can specify a level of confidence or 

conversely a risk value.Thus the statement is possible that 

there is only a 5% chance for the voltages at this node to be 

below 0.9490 p.u., or a 1% chance for the voltages to be 

below 0.9464 p.u.. These results can now be used to decide, 

whether grid reinforcement is necessary at this node or not and 

is more accurate than the simulation with standard load 

profiles. 

Interestingly, Fig. 6. shows that without e-mobility there is not 

a big difference between the simulations with probabilistic 

loads and standard load profiles. Therefore, probabilistic load 

flow only brings small increases in precision over the 

simulation with standard load profiles. For the simulation with 

electric vehicles, however, it is advisable to use probabilistic 

load models. This is due to the high deviation of single vehicle 

profiles compared to the standard load profile for electric 

vehicles. Looking at Fig. 5, the load profile for 43.5 kW only 

reaches 1.2 kW on average, while single cars are charging 

with up to 43.5 kW. This is a significant difference for voltage 

drop on the corresponding feeder, where that specific car is 

connected to the grid. 

IV.  CONSEQUENCES FOR FUTURE GRID PLANNING 

The rising share of electric vehicles will inevitably lead to an 

increase in peak load of households. Because it is unknown, 

which households will have an EV, it is necessary to account 

for the probability of occurrence of an EV in each household 

with regard to the degree of electrification of vehicles. In this 

section, the results of domestic and electric vehicle load 

modeling are combined to develop recommendations for 

future grid planning and feeder design. 

For the derivation of load profiles for electric vehicles in 

section II, the generation of a daily profile for a single vehicle 

was conducted many times. To derive, what loads may occur 

on a single feeder in a low voltage grid with, for example, 10 

electric vehicles connected, a daily profile for the vehicles is 

calculated. With their chance to be electric, their PDF for the 

time of arrival and their PDF for the daily travelled distance, 

this daily profile is stochastic. Doing this multiple times and 

taking the maximum of every daily profile yields a distribution 

of peak loads, which is depicted in Fig. 8 for different 

numbers of vehicles. 

The circle depicts the median of the peak loads of all profiles. 

The thicker box begins at the 25
th

 percentile and ends with the 

75
th

 percentile. The thinner box begins at the smallest and ends 

at the largest occurring peak load. For example, for only one 

vehicle, this peak load will always be 11 kW. And if infinite 

profiles were generated, the thinner box would always reach 

11 kW, because it is always possible but very improbable that 

all vehicles charge simultaneously. It is clear that the expected 

peak load per vehicle decreases with an increasing number of 

vehicles, because they tend to charge more evenly distributed. 

With small populations, it is more probable that vehicles 

charge simultaneously. The limit of the median as the number 

of vehicles goes to infinity is the peak load of the standard 

load profiles depicted in Fig. 5. Furthermore, the 25
th

 and 75
th

 

percentile would have the same value as the median. 

 
Fig. 8.  Probability distribution of peak loads occurring with a certain number 

of vehicles charging each with 11 kW with random times and durations 

(10,000 Iterations for each number of vehicles). 

 

Fig. 9 shows the described median for larger number of 

vehicles divided by the peak load of the standard load profile 

for electric vehicles. This helps to assess the difference of a 

simulation with standard load profiles and probabilistic single 

loads. For example, when looking at a low voltage grid with 

600 electric vehicles charging with 3.7 kW, the simulation 

with probabilistic single loads will result in an increased peak 

load at the transformer of about 5%.  
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Fig. 9.  Factorial increase of peak load due to the usage of probabilistic single 

load profiles for EV instead of standard load profiles. 

 

Charging the vehicles with 11 kW will already result in an 

increase of 10% compared to the simulation with standard 

load profiles. This comparison helps to decide from when on it 

is feasible to use standard load profiles instead of probabilistic 

single loads. If a 5% deviation of peak loads would be 

acceptable, a number of 2,000 vehicles charging with 11 kW 

is necessary to use a standard load profile instead. For 3.7 kW 

charging, already 600 vehicles would be sufficient. Looking at 

the considered low voltage grid in section III, a number of 900 

households and therefore about 1,080 vehicles already 

represents a large low voltage grid. However, a degree of 

electrification of 55.5% would be needed for the necessary 

600 electric vehicles to justify the use of standard load 

profiles. Therefore, standard load profiles are only 

recommended for the simulation of medium voltage grids. 

Similar considerations are already made regarding domestic 

load profiles to be able to design the necessary peak load 

capacity of a feeder connecting a certain number of 

households. By defining a certain risk, one can assess a load 

threshold for the expected peak load for a certain number of 

vehicles, which is not exceeded. The peak loads for domestic 

loads and electric vehicle loads using a risk of 1% are depicted 

in Fig. 10. This means, that only in 1% of cases the actual load 

exceeds the depicted one. The choice of a smaller risk results 

in an increase of peak load per vehicle. 

Interestingly, the peak load of vehicles surpasses the peak load 

of households when charging with 22.1 kW and for larger 

number of households the peak of 11.0 kW charging is almost 

as high as the one of the households. This confirms the 

assumption, that electric vehicles will increase the necessary 

peak load for households significantly. However, these values 

are only valid when looking solely at electric vehicles or at 

domestic loads, but not in combination. The values cannot just 

be added, because that would assume their respective peak 

loads to occur at the same time. 

To determine the resulting peak load of domestic loads 

combined with electric mobility, loads for households are 

chosen randomly from measurement data. 

 
Fig. 10.  Comparison of peak loads between households and electric vehicles 

with different charging power. 

 

In a next step, it is randomly determined how many electric 

vehicles are present depending on the degree of electrification. 

Finally, a probabilistic load model for each of the vehicles is 

added to the load of households. Fig. 11 shows the result of 

99% percentile peak loads over the number of households with 

2.5% (scenario for 2020) and without electric mobility. Fig. 12 

shows the same results for a degree of electrification of 12.5% 

(scenario 2030).  

 
Fig. 11.  Necessary peak load capacity of LV Feeder with 2.5% EV (dashed 

lines depict load management system with according charging power). 

 

The continuous lines represent electric vehicles charging 

without load management while the dashed lines represent 

electric vehicles charged with a simple load management 

system, which is easily applied and does not need 

communication. This load management system selects a 

uniformly distributed end time for each vehicle between 0:00 

am and 5:00. The beginning of charge is delayed until the 

remaining time is just sufficient for the necessary energy to be 

recharged until the end time. 

Fig. 11 and 12 show a remarkable increase of peak load 

demand of households due to e-mobility. However, in the 

scenario for 2020 with 2.5% degree of electrification in Fig. 

11, there is no significant effect up to a charging power of 

11.0 kW. Starting with 22 kW, there is a noteworthy increase.  
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Fig. 12.  Necessary peak load capacity of LV Feeder with 12.5% EV (dashed 

lines depict load management system with according charging power). 

 

For Fig. 12 with 12.5% electrification, there is already a major 

effect on peak load demand starting with a charging power of 

11 kW. However, these effects can be mitigated by the simple 

load management system, as described above. The effect of 

the load management system is shown by the arrows, which 

show the reduction from the continuous to the dashed line for 

a certain charging power. 

A more sophisticated load management system may even 

achieve further peak loading reduction. For example, if there 

is a load measurement on the feeder, the load management 

system could charge the vehicles only when the measurement 

is below a certain load. Regarding the energy, the grid has 

enough capacity to charge the vehicles. Only the peak load 

exceeds the technically admissible limits. This load 

management may reduce the resulting curves in Fig. 11 and 12 

even to the level of the basic curve without e-mobility. 

However, LV grid monitoring and communication are 

necessary to deliver a load measurement at the feeder to the 

corresponding vehicles. Furthermore, the charge of vehicles is 

slightly delayed compared to the uncontrolled case, where the 

vehicles are charged immediately on connecting to the grid. 

The deployment of such a load management system not only 

mitigates the effect of e-mobility on occurring peak load on 

cables and power lines, but decreases major voltage drops thus 

allowing cost savings by reducing the grid capacity required. 

By applying the detailed probabilistic load model for electric 

vehicles, one can assess and compare the costs and benefits 

associated with the introduction of different load management 

systems. 

V.  CONCLUSIONS 

To analyze the effects of e-mobility on voltage bands, a 

detailed knowledge of the probability of occurrence of loads is 

necessary. This paper shows the importance of different load 

models on the outcome of a load flow calculation for grid 

analysis, developing a load model for electric vehicles. This 

was done by taking into account the mobility behavior of car 

owners acquired by survey data, especially with regard to their 

daily travelled distances and time of arrival, when the vehicle 

most likely will start charging. This probabilistic load model 

accounts for local clusters of electric vehicles connected to a 

certain feeder. Additionally, it accounts for temporal 

accumulations of vehicles returning home and starting 

charging simultaneously, as well. This probabilistic load 

model provides significantly better results for the probability 

of occurrence of voltages and even transformer loads than the 

simulation with standard load profiles. It was shown that the 

application of standard load profiles for e-mobility is not valid 

for less than around 1,000 electric vehicles and therefore 

cannot be used even for large low voltage grids. Standard load 

profiles should only be used for the simulation of medium 

voltage grids. Although even in this case, the artificial 

coincident factor of 1 introduces inaccuracies inherently and 

probabilistic loads for single vehicles are still advantageous. 

Furthermore, the findings of this contribution help to assess 

the condition of a grid concerning an increasing market share 

of electric vehicles. Especially the results regarding the load 

profile and single load probabilities of electric vehicles may 

improve future grid planning, which has to take into account 

new technologies like e-mobility and possible load 

management systems. In addition, the detailed knowledge of 

voltage bands can benefit grid operation as well. By utilizing 

the detailed view on voltages, different load management 

strategies can easily be compared regarding their costs and 

viability.  
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