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Abstract: Frequency Response Analysis compares measured transfer functions of power 
transformers. Deviations of frequency response curves indicate electrical or mechanical damages 
of windings. As assessments are done by experts, no objective guidelines for interpretation of 
measurement results exist. This paper deals with approximation of measured power transformer 
frequency responses using complex rational function models. A fitting algorithm maps the 
information contained in measured curves on a pole-zero model of reduced complexity. The aim is 
to develop an algorithm for automated interpretation using analytical models created on the basis 
of measurement data. Requirements of accuracy of the approximation models for purposes of 
Frequency Response Analysis are considered. An enhanced algorithm for complex rational 
function estimation based on the proven Vector Fitting method is presented. Finally, application of  
the algorithm with real measured data is demonstrated. 

 
1. INTRODUCTION 

Frequency Response Analysis (FRA) is one of the key 
tools in power transformer condition assessment 
enabling detection of winding and core faults. Its 
application is mostly meaningful after events such as 
electrical faults in the connected power grid or after 
transport of a power transformer. Changes of the 
transfer function (TF) indicate mechanical and/or 
electrical changes of the active part. However, 
interpretation of frequency response deviations is a 
non-standardised step and is therefore not objective. 
Mathematic modelling of power transformer transfer 
functions obtained by measurements is – in this 
approach – regarded to be the first step for future 
automatic interpretation of frequency response 
deviations since assessments can be based on a set of 
rules evaluating the changes of two analytical transfer 
function models rather than the measured data. 

1.1. Basic principle of FRA 

The electrical behaviour of power transformers in 
higher frequency range is determined through a 
complex network composed of the resistance and 
inductance of the windings as well as various 
capacitances between windings, core and tank.  
Capacitances play a dominating role in higher 
frequencies while core effects can only be seen in 
lower frequency range. Geometrical changes of the 
windings like displacements, buckling or conductor 
tilting are changings of distances between energized 
elements which result in altered capacitances. 
Moreover, a windings’ self-inductivity can vary due to 
altered flux path structure. So it can be said that a 
power transformers’ frequency response is a unique 
representation of its structural layout. 
 
FRA is a comparative method: The functional principle 
is to compare two complex transfer functions with each 
other. One is the so-called reference TF, another is the 

test TF, which e.g. has been measured when the 
transformer was offline during service. 
No or slight differences between TFs indicate no 
electrical or mechanical change inside the transformer 
while deviations suggest potentially critical variances 
in relation to the reference. Figure 1 shows an 
illustration of a power transformer seen as an electrical 
multi-port network. 

 

Figure 1: Power transformer as multi-port network. 

Particularly three phase transformers offer numerous 
possible (complex) transfer functions. Regarding one 
quadripole, two main types are transferred voltage 
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and input current (input admittance): 
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Concerning one dedicated two-port network, 
investigations in the past revealed, that all TF types 
show sensitivity towards mechanical changes [1]. 
 
1.2. State of the art and interpretation difficulties 

In the past, FRA experts were mainly dedicated to 
work on reliable measurement techniques that ensure 
reproducible measurement results. This is an 
indispensable premise for FRA ensuring its 
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authenticity as a diagnostic method (see [2]). However, 
there’s a gap in one’s knowledge concerning the 
interpretation of TF deviations. 
A visual comparison of the of TF magnitude curves  
| TF(f) | done by experts is state of the art. As yet, only 
very few rudiments for algorithm assisted 
interpretation of FRA results exist [3]. Application of 
these approaches with FRA data measured in the field 
showed algorithmic shortcomings which confirms that 
FRA assessments by experts are not replaceable so far. 
 
1.3. FRA interpretation methodologies 

Saying interpretation, i.e. (visual) comparison of power 
transformer frequency responses, special attention to 
resonance characteristic of TFs has to be paid. 
Damping differences covering the whole frequency 
range are typical for variances in the measurement 
setup. Noticeably frequency confined damping 
differences, relocation of resonance peaks, creation of 
new resonances or disappearance of resonances in 
relation to the reference TF are quite evident for 
electrical or mechanical changes of the active part of a 
power transformer. The challenge of future automatic 
FRA interpretation is to capture these assessment 
methodologies. Only with algorithmic interpretation, 
objective evaluation of FRA measurement results is 
possible. Information about resonance behaviour of 
TFs lies within a mathematical formulation of 
frequency responses. The main aim is to compare 
analytical models of frequency responses in order to 
grasp deviations of resonances between FRA curves, 
which is pre-condition for advanced automatic 
interpretation. Further paragraphs of this paper deal 
with the analytical formulation of TF by means of an 
enhanced rational approximation method. 
 
2. APPROXIMATION OF FREQUENCY 

RESPONSES 

2.1. Analytical modelling of TFs 

An analytical function is a mathematical formulation 
using a closed expression. TFs of RLC two-port 
networks are linear systems and can be described by 
rational functions consisting of two polynomials with 
real coefficients (am, bn): 
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where s denotes the complex frequency of a Laplace 
transformed function in time domain. An equivalent 
expression to (3) is given by: 
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As (am, bn) are real, zeros and poles (zm, pn) come in 
complex conjugate pairs. 

 
2.2. Rational approximation by Vector Fitting 

In [4], an iterative method called “Vector Fitting” (VF) 
is described which, given the predefined degree of (4), 
tries to find the best fitting rational function for a 
measured complex frequency response in a least square 
sense. The algorithm starts with an arrangement of N/2 
stable complex conjugate pole pairs equally distributed 
over the whole measured frequency range and relocates 
them towards poles of the measured curve within one 
iteration step to improve the fitting. The algorithm 
reformulates this nonlinear approximation problem by 
sequentially solving two linear problems.  
Figure 2 shows a measured TF magnitude curve 
together with the magnitudes of the approximation 
function after 10th iteration step. The red dashed-dotted 
and blue dotted vertical lines show the corresponding 
frequency positions of poles after one respectively 10 
iteration steps. 
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Figure 2: Measured transformer frequency response 
and approximated functions with corresponding pole 
locations of different iteration stages. 

2.3. Parameters of approximation process 

The final result of the approximation process is not 
independent from user input parameters. The number 
of iterations and the assumed degree of measured TF 
play an important role for the algorithm. The degree of 
the rational function has to be chosen carefully. 
Although the algorithm converges if the chosen ordinal 
number N exceeds the needed theoretically needed 
complexity, the result will contain lots of unimportant 
poles (with great negative real part) which makes it 
intransparent. In another word: If a measured 
frequency response of e.g. 1000 points is fitted by a 
rational function of degree 600, the result is useless. 
On the other hand, if the chosen degree is below the 
needed value, the algorithm will only deliver poor 
accuracy, which is not acceptable. Both parameters – 
ordinal number and number of iterations – influence 
each other. High numbers of iterations do not improve 
the fitting result necessarily, as shown later in this 
paper. Additionally, not only ordinal number but also 
prior choice of starting pole locations has an effect on 
the final fitting result.  
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3. FITTING ACCURACY REQUIREMENTS 

In this paper, the aim of frequency response 
approximation is, to obtain a fitted rational function of 
minimal complexity that fulfils the requirements in 
accuracy for FRA curve comparisons. The approach of 
parameterisation of TF curves for further interpretation 
purposes will only be successful, if different algorithms 
produce the same pole-zero representations for the 
same input data [5]. The need to establish measures 
along with threshold values assuring approximation 
quality is evident. Loss of information during fitting 
process is not acceptable. 
 
3.1. Measuring of approximation accuracy 

Quality of approximation can easily be quantified with 
the measure of root mean square error (RMSE) of 
standardized TFs: 

RMSE ൌ ඩ
1
ܮ
෍ቆ

หܶ݃݅ݎ݋  ܨ ሺߥ · Δ݂ሻห െ หܶݐ݂݅  ܨ ሺߥ · Δ݂ሻห
หܶ݃݅ݎ݋ܨ ห

ቇ
ܮ2

ൌ1ߥ

 

 

(5)

 
using 

หܶ݃݅ݎ݋ܨ ห ൌ
1
ܮ
෍หܶ݃݅ݎ݋  ܨ ሺߥ · Δ݂ሻห
ܮ
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(6)

 
Standardization cares for comparability of transfer 
function types with different co-domains.    
Investigations with many measured transformer 
frequency responses revealed, that approximations with 
calculated RMSE in the per mill range deliver 
sufficient accuracy. The crucial criterion is, that the 
fitting error is smaller than the deviations caused by 
measuring tolerances of repeated FRA measurements. 
The following figure shows two FRA curves of the 
transferred voltage (phase 1W-2W) of the same 
transformer. 
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Figure 3: Reference and repeated measurement of 
transferred voltage on phase W of 200MVA 
transformer (220kV-110kV) with RMSE = 0.0344. 

The time period between reference and repeated 
measurement is almost 6 years. Calculated RMSE is 
0.0344 which indicates very good repeatability; Other 

measurements exceed the RMSE value of 0.1 but still 
can be regarded as acceptable. 

3.2. Quality of resonance fitting 

Not only has the parameterization of measured TF to 
meet the needs concerning the integrated measure of 
RMSE, but also the precision of reproducing resonance 
peaks has to be satisfied. When comparing two 
frequency response curves, differences of resonance 
peaks in magnitude, Q and – above all – frequency are 
important. So as to create rational functions for FRA 
interpretation to this end, variances of resonances 
between measured and fitted curve have to be smaller 
than deviations caused by the measurement 
respectively resolution of the data recording format. As 
an example, Figure 4 shows the result of an 
approximation in the low frequency part of a TF. This 
fitting result can be regarded as limit case regarding 
accuracy. 
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Figure 4: Measured and approximated TF in lower 
frequency range. Small deviations in frequency of 
resonances at 65 kHz and 72 kHz can be seen.  

A slight shift between resonances at 65 kHz and  
72 kHz can be seen. Analysis of many frequency 
responses – reference and repeated measurements – 
recorded with equipment of different manufacturers 
revealed that, depending on measuring parameters like 
frequency range, number of recorded frequency points, 
linear or logarithmic distribution of points, shifts of 
2...3kHz are within the range of resolution respectively 
repeatability imprecision. Figure 5 again points out, 
that fitting quality has to be evaluated by RMSE as 
well as a comparison of the quality of resonance match. 
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Figure 5: Measured and fitted transfer function with 
RSME = 0.002 

Although RMSE is 0.002 in this case, the two 
resonances around 920 kHz of the measured curve are 
not satisfyingly captured by the approximated curve. 
Automatic recognition of this problem instead of visual 
check can be challenging. An automatic recognition 
algorithm for this problem is in early stage of 
development. 

4. ENHANCED FITTING ALGORITHM FOR 
FRA INTERPRETATION PURPOSES  

The Vector Fitting algorithm described in [4] is 
meanwhile a proven method for creation of mathematic 
models of measured frequency responses. Applications 
go from transmission line modeling to extraction of 
stray parameter functions for dimensioning of filters 
for electromagnetic compatibility purposes. There are 
differences between applications concerning frequency 
range as well as accuracy. As described in previous 
paragraph, requirements for FRA interpretation 
considering accuracy are relatively high. This section 
describes the adaption of the algorithm to improve 
fitting results. 

4.1. Conventional Vector Fitting 

Convergence – and therefore fitting quality – of the VF 
algorithm depends on start conditions. There are two 
main points to consider: A good (pre-)estimation of the 
degree of the rational fitting function and a suitable 
start distribution of poles. Conventional VF requires 
the desired number N/2 of complex conjugate pole 
pairs as input parameter. The frequency locations of 
starting poles are by default distributed evenly over the 
entire frequency range fmax = L·Δf of the measured TF: 

ݐݎܽݐݏ,݊݌ ൌ ݐݎܽݐݏ,݊ߙ ൅ ݆ ·  ݐݎܽݐݏ,݊ߚ
(7)

 
 

 

with 

ݐݎܽݐݏ,݊ߚ ൌ
݂݉ߨ ݔܽ

ܰ 2⁄
ሺ2݊ െ 1ሻ 

 
 

ݐݎܽݐݏ,݊ߙ ൌ െ0.01 · หݐݎܽݐݏ,݊ߚ ห 

(8)

 
(9)

 
(n ∈ [1, ..., N/2] for f > 0 denotes one half of  
N complex conjugate pole pairs). 

Figure 6 illustrates the convergence problem 
encountered with several measured frequency 
responses. While accuracy in lower frequency range is 
good, it is insufficient for higher frequencies. Even for 
high numbers of degree, fitting quality could not be 
improved. One would think that by increasing the 
number of iteration steps the fitting result can be 
improved. Unfortunately this is not an option.  

Figure 7 shows the development of RMSE of the 
frequency response of Figure 6. 
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Figure 6: Measured TF and approximation using 
conventional Vector Fitting. Deviations are obvious. 

RMSE stagnates or even increases if pole relocation is 
repeated – even with very high degree of the fitting 
rational function. This makes clear that an ill-
conditioned starting pole distribution does not lead to 
satisfying fitting results. 
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Figure 7: RMSE vs. number of iterations. 
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This problem can be overcomed by algorithmic 
estimation of ordinal number and optimization of 
starting pole distribution. 

4.2. Degree estimation of fitting function 

The idea behind this approach uses the fact that every 
pole creates a local resonance peak in |TF(f)|. 
Amplitude and Q of local maximum are not only 
determined by αn = Re{pn} but also by adjacent poles 
that superpose each other. In fact, not every pole 
creates its corresponding local maximum. However, 
there exists a certain number of poles between local 
minima in |TF(f)|. By segmentation of the frequency 
range of the measured TF at frequencies with local 
minima, rough estimation of the needed ordinal 
number can be achieved. Figure 8 shows the 
segmentation of a measured TF.  
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Figure 8: Segmentation of TF using local minima 

The precise number of poles between local minima 
cannot be identified this way but will be determined 
within the next step. For frequency responses 
containing mentionable amounts of noise, smoothing 
of the TF curve using a simple moving average filter 
helped to find appropriate segmentations. 
 
4.3. Algorithmic determination of starting poles 

Because several poles can be located between 
frequencies of minima, the exact number and location 
of these poles must be determined for each section. 
This is done by piecewise executing of the vector 
fitting algorithm: For every section of TF(f) with  
fmin, k ≤ f < fmin, k+1, a fitting rational function is 
determined, beginning with 2nd order. RMSE is 
computed after wise. If RMSE < 0.05 is achieved for 
this section, the found poles are saved in a table. If 
RMSE > 0.05, the degree of the rational function for 
this section is increased by 2 and so on, until an 
appropriate rational function is found for every section. 
As the final step, Vector Fitting is executed using the 
determined poles of each section as starting poles. A 
Nassi-Schneiderman diagram of the algorithm is shown 
in Figure 9. 

 
 

Divide TF(f) into W sections
(on the basis of local minima)

For all sections i W

RMSE  0.05?

N := N+2

Execute Vector Fitting (Order N)

Save determined poles of section i

Execute Vector Fitting using determined 
poles as starting poles to approximate TF(f) 

Fitting Order N := 0

 

Figure 9: Structogram of enhanced fitting algorithm. 

It displays the compactness of the algorithm which can 
be implemented and reproduced easily. 

5. COMPARISON OF FREQUENCY 
RESPONSES 

Figure 10 shows two measured frequency responses 
recorded logarithmically (800 points). There are 
obvious deviations beginning at low frequencies. 
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Figure 10: Two deviating frequency responses  
(800 points, linear-logarithmic view). 

A rational function was created for the first frequency 
response (reference) with accuracy of RMSE < 0.03. 
After that, a second rational fitting function for the test 
TF was created using the poles of the first fitting as 
starting poles. During this process, no new poles are 
created. The Vector Fitting algorithm relocates these 
starting poles in order to achieve the most precise 
approximation to the second TF in a least square sense. 
Figure 11 shows the fitting result of both frequency 
responses. 
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Figure 11: Reference and Test TF with 
approximations (800 points, linear-linear view) 

The advantage of this approach is that slight 
differences between TF are easily measurable because 
corresponding poles are recognisable in an objective 
way: Shifts of resonances can be read directly from a 
diagram like shown in  
Figure 12. It illustrates distribution of discrete 
resonance frequencies over the whole frequency range. 
The red curve reflects the reference TF and is therefore 
a straight line. The blue curve corresponds with the test 
TF. The green curve displays absolute frequency 
deviations of resonances. 
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Figure 12: Comparison of frequency responses using 
pole frequencies of fitted rational function models. 

Interpretation of slight deviations between frequency 
responses is the most challenging task of FRA. The 
found analytical representations are a first starting 
point for further algorithms contributing to automatic 
assessment of FRA measurements. 
 

6. CONCLUSION 

There is a need for algorithms helping to assess FRA 
measurements. The aim is to find an objective way to 
compare measured frequency responses of power 
transformers. 
The advantage of a mathematical formulation of a TF 
over an array of hundreds of measured function values 
is the reduction of complexity. 
Feasibility of approximation of measured frequency 
responses by rational functions is shown. The 
presented algorithm is based on the proven Vector 
Fitting method.  
Mechanics of complex function approximation are 
predicated on relocation of poles of a predefined 
rational fitting function. 
Loss of information for the calculated model of a TF is 
not acceptable. Accuracy of the fitting result has to be 
in the range of reproducibility imprecision of 
measurements. RMSE is a suitable measure for the 
quality of a fitting result and should be in the per mill 
range in order to fulfil accuracy requirements. Main 
resonances in measured TF should be captured with a 
frequency deviation of less than the recorded frequency 
resolution. 
The procedure of TF approximation with Vector 
Fitting is improved by pre-estimation of the needed 
model complexity along with optimized starting pole 
distribution. 
The developed algorithm was demonstrated using 
measured FRA data. Future interpretation algorithms 
may incorporate comparisons of pole patterns of fitted 
analytical models. 
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