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Abstract: Condition assessment is an important part of the dissolved gas analysis. The paper 
presents three essential strategies which aim at the improvement of the interpretation methods used 
for dissolved gas analysis. The strategies are: Fuzzy-modelling, adjustment and merging. Firstly, 
fuzzy-modelling is addressed. Interpretation methods are recreated by fuzzy inference systems. In 
doing so, thresholds used by the original methods are replaced by condition probabilities. 
Secondly, the paper discusses the strategy of adjustment. This strategy intends to adjust the 
recreated interpretation methods by training of the subjacent fuzzy inference systems with verified 
transformer conditions. The interpretation methods thereby improve their accuracy and reliability. 
Thirdly, the strategy of merging is presented. This strategy merges the outputs of all interpretation 
methods in a condition tree. The result is an interpretation method that identifies more transformer 
conditions than the particular interpretation methods. Furthermore, the method’s accuracy and 
reliability is further improved. Finally, the paper discusses the results of the applied strategies. 
 

 
1. INTRODUCTION 

Power transformers play a crucial role in present-day 
risk based asset management of power grids. The 
outage of huge power transformers cause high 
maintenance expenses and presumably lead to an 
inadequate electrical power supply. In order to prevent 
power transformers from outages, different inspection 
techniques are in use. One approved technique is the 
dissolved gas analysis (DGA). 

DGA, in turn, knows various methods to assess power 
transformer’s condition, such as “General Electric”, 
“Doernenburg Ratios” or “Duval Triangle” [1]. These 
interpretation methods show two drawbacks: At first, 
methods use thresholds either for key gases or for key 
gas ratios to decide on power transformer’s condition. 
As a result, it is possible that methods decide on 
different conditions even at the time when vectors of 
key gases or key gas ratios are very similar. Secondly, 
most diagnostic methods do not allow for different 
conditions at once. But, as a matter of fact, power 
transformers can be in a complex condition that is a 
superposition of simple conditions [2]. In section two 
fuzzy inference systems (FIS) are introduced in order 
to solve these problems by fuzzy-modelling. 

Furthermore, the accuracy of DGA’s interpretation 
methods is improvable. Faults that are discovered by 
inspection of defective and therefore decommissioned 
power transformers are sometimes different to faults 
identified by DGA’s interpretation methods. Moreover, 
DGA’s interpretation methods sometimes state that a 
transformer is faulty when it is actually healthy. In 
order to avoid these problems, section three introduces 
a training approach for FIS. The training takes cases of 
verified faults and healthy conditions so as to adjust 
interpretation methods for a better hit ratio [3]. 

Finally, one can observe, that interpretation methods 
differ in case of their distinguishable conditions. While 
some decide rather roughly, others go into detail. In 
addition, the output of these interpretation methods can 
coincide or differ from case to case. In order to face 
these problems, section four introduces a merging 
strategy which merges different interpretation methods 
in a unified condition tree. 

2. MODELLING WITH FUZZY INFERENCE 
SYSTEMS 

DGA-based condition assessment of power 
transformers is very similar to condition diagnostic in 
medical science. In medical science medical scientist 
take blood samples first, secondly they analyse blood 
components qualitatively and quantitatively and finally 
they identify human’s physical condition.  DGA in turn 
uses oil samples in order to analyse dissolved gases 
qualitatively and quantitatively. Depending on the 
results, the power transformers’ condition is assessed 
(Figure 1). 

Figure 1: Five main steps for classifier modelling and 
condition classification. 

The paper does not address sampling and measurement 
(Figure 1.1). Subject of investigation is the treatment of 
already measured gas values with the aim to improve 
the identification of conditions. On that account, Figure 
1.2-5 depicts all steps that are addressed in this paper. 



Figure 1.2 depicts pre-processing, which can be 
performed in order to improve the quality of gas 
values. Examples for pre-processing are: Averaging of 
gas values along the time or correction of systematic 
variations. Thirdly, gas values must be transformed 
into the feature space (Figure 1.3). Concretely, ratios of 
gas values have to be calculated and thresholds have to 
be applied to gas values and gas ratios. In Figure 1.4 
the set of features is reduced to the characteristic 
symptoms of each condition type. In opposite to 
medical science, the authors use the term “symptom” 
not only for faulty conditions, but also for healthy and 
undefined conditions. Finally, the symptoms need to be 
mapped to the corresponding conditions. The mapping 
is performed by a classifier (Figure 1.5b). A classifier 
can be modelled based on one of many well known 
interpretation methods like for example “General 
Electric”, “Doernenburg Ratios” or “Duval Triangle” 
(Figure 1.5a). Of course other classifiers are applicable. 
In particular those classifiers are applicable that work 
with fuzziness and probabilities. 

2.1. Classifier’s properties 

Classifiers map features that are symptomatic for a 
condition as symptoms to the condition, while 
classifiers don’t map features that are asymptomatic. It 
is important that classifiers are surjective. Surjectivity 
means: For each condition C there is at least one 
feature (F) which is mapped to the condition as a 
symptom (S). Classifiers, which are not surjective, 
cannot identify all conditions. Figure 2 depicts a 
surjective classifier by example of General Electric. 
The classifier maps symptom Sthermal fault (high temperature) to 
the condition Cthermal fault (high temperature), while it doesn’t 
map the other symptoms to that condition. In order to 
achieve a clear view, the mappings for the other 
conditions are not depicted. 

 
Figure 2: The surjective classifier of General Electric. 

2.2. Fuzzy classifiers 

In order to avoid thresholds and in order to state 
probabilities for transformer conditions it is necessary 
to build classifiers by means of FIS. It is neither the 
intention of the paper to present details about the 
functionality of FIS nor to show how FIS help to build 
fuzzy classifiers. An introduction to the basics of FIS is 

given in [4] and an introduction to the basics of 
classifier modelling is presented in [5]. Instead the 
paper focuses on the replacement of thresholds by 
condition probabilities. 

The original classifier of General Electric, which is set-
theoretic regarded in Figure 2, works with exact 
symptoms that use thresholds. Thus, the mapping is 
exact, too. Figure 3 presents a spatial view of the 
original General Electric classifier. As one can see, the 
exact symptom “C2H4/C2H6 > 1 and C2H2/C2H4 < 1” is 
mapped to thermal fault (high temperature), while all 
other symptoms aren’t mapped to thermal fault (high 
temperature). 
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Figure 3: Original General Electric classifier that maps 
exact symptoms to "thermal fault (high temperature)". 

FIS are able to make exact classifiers fuzzy. Set-
theoretic spoken, fuzzy classifiers can be understood as 
gradual mapping of symptoms to transformer 
conditions. There is no “map to” or “don’t map to” 
anymore. Mapping of symptoms to conditions with FIS 
is then a matter of degree (Figure 4). 
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Figure 4: Fuzzy version of original Figure 3 classifier. 

Fuzzy mapping is achieved by proper membership 
functions. The paper deals with membership functions 
derived from cosine. Thus, these membership functions 
are point symmetric and cover the whole range from 0 
to 1. For the fuzzy classifier of General Electric, which 
is depicted in Figure 4, two types of membership 
functions are used: Firstly, the membership function of 
Equation 1 and secondly the complementary 
membership function of Equation 1. 
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3. ADJUSTMENT OF INTERPRETATION 
METHODS BY TRAINING 

Fuzzy classifiers do not inevitably identify transformer 
conditions perfectly. Verified transformer conditions 
associate with measured gas values can agree or 
disagree with classifier’s results. It is the purpose of 
training to adjust classifiers where required. 

The paper deals with training data from the IEC TC 10 
database which is presented in [6]. The database 
provides training data for different equipment. In order 
to improve the classifier for power transformers with a 
“none-communicating” OLTC, the paper deals with the 
corresponding training data. If the classifier should be 
improved for other equipment, other data has to be 
used for training. In sum, 41 training data are used. In 
order to save space, Table 1 shows only a snippet of 
the training data. The training data consist of measured 
gas values and identified faults by inspection of the 
equipment. These training data is listed in excerpt in 
row 5-8 of Table 1. Furthermore, the database provides 
training data that consists of measured gas values 
where the equipment in 90% of all cases is identified as 
normal operating (healthy condition). In Table 1 these 
training data is listed in row 1-3. 

Table 1: Snippet of training data taken from [6] 

62

42

HC
HC  

42

22

HC
HC  

Not 
defined 

e.g. 
healthy 

Electrical 
fault 

 

Thermal 
fault 
(low 

temp.) 

Thermal 
fault 
(high 
temp.)  

1.00 0.10 90 % 0 % 0 % 0 % 
2.34 0.06 90 % 0 % 0 % 0 % 
0.77 0.30 90 % 0 % 0 % 0 % 

… … … … … … 
12.64 0.04 0 % 0 % 0 % 100 % 

6.05 0.03 0 % 0 % 0 % 100 % 
2.81 0.00 0 % 0 % 0 % 100 % 

… … … … … … 
 
Whilst the fuzzy classifier is trained with all 41 
training data it changes its shape a little (Figure 5). 
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Figure 5: Trained fuzzy classifier of Figure 4. 

The figure shows that the training only affects some 
areas. In order to make it easier to identify where 
changes took place, Figure 6 pictures the training 
impact solely by showing the difference of the trained 
fuzzy classifier (minuend) and the untrained fuzzy 
classifier (subtrahend). 
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Figure 6: The impact of training to the untrained fuzzy 
classifier. 

Regarding Figure 6, one notice two areas which are 
visibly (and actually) affected by training:  

1. C2H4/C2H6 > 1 and C2H2/C2H4 < 1: The 
probability of thermal fault (high temperature) 
is notably decreased. 

2. C2H4/C2H6 < 1 and C2H2/C2H4 < 1: The 
probability of thermal fault (low temperature) 
is slightly increased. 

3.1. Training algorithm 

The paragraph above is about training and training 
results on a user level. In order to validate the results of 
the training (trained fuzzy classifier), it is important to 
have a look at the training algorithm itself, which is 
given by Figure 7. 

Beforehand, one should recall that classifiers are 
constructed by FIS. That is why the training algorithm 
has to operate on FIS level. The training itself is 
originally tied to artificial neural networks and not to 
FIS. If one focuses on a special category of artificial 
neural networks, namely radial basis function artificial 
neural networks, and a special category of FIS, namely 
Sugeno type FIS, one can observe that both are 
equivalent [7]. Hence, at least in this case it is possible 
to carry over the training feature of the artificial neural 
networks to the FIS. 

Furthermore, it is important to know that FIS internally 
map each symptom to a condition by exactly one 
production rule and this production rule is weighted. 
The weight takes values in the range of [0, 1] to 
indicate the relative reliability of the corresponding 
production rule. In order to switch between a 
production rule and the equivalent number of training 
data, it is necessary to keep the trust factor. This trust 



factor cannot be held inside the FIS and should 
therefore be saved somewhere else. 

Figure 7: Training algorithm written in pseudo code. 

In line 1 the training algorithm loads the FIS, the trust 
factor and finally the training vectors. In the FIS all 
production rule weights are initially set to 1. That 
means the relative reliability of all production rules are 
taken to be equal. The trust factor is initially set to 100. 
It indicates that the most reliable production rule is as 
meaningful as 100 training data. In subsequent lines 2-
4 the training algorithm de-normalises production rule 
weights. Afterwards in lines 5-13 the training 
algorithm identifies for each training vector which 
production rule has to be modified. Then the 
conclusion and weight of the identified production rule 
are modified. The new conclusion is defined as the 
weighted average of the old conclusion and the 
statement of the training data. The new weight is 
defined as the old weight increased by one. After that, 
the new trust factor is calculated in lines 14-17. Then 
de-normalisation of production rule weights take place 
in lines 18-20. Finally, the algorithm saves the 
modified FIS and the new calculated trust factor in line 
21. 

Summing up, one can say that the training algorithm 
calculates the arithmetic mean to train the FIS 
according to the training data. The relative reliability of 
a production rule is represented by its weight. The trust 
factor is needed to compare production rules and 
training data.  

3.2. Regression analysis and expectation value 

In the paragraph above the approach of weighted 
average is used in order to train the FIS. But the 
question is still unanswered, whether the approach is 
meaningful or not. 

Training of fuzzy classifiers is in fact the same as curve 
fitting. In the context of statistics curve fitting is called 
regression analysis. The aim of regression analysis is to 
fit a given parameterised function to given data points. 
Typical parameterised functions are polynomial like in 

equation 2. Equation 2 is a parameterised polynomial 
function with two variables, x1 and x2. Thus, it is 
capable to fit data points by a polynomial surface. 
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In order to adjust a classifier’s surface there are two 
fundamental strategies: Either fitting the whole 
classifier at once globally or fitting the classifier one 
by one locally. The paper deals with local fitting. That 
is, because classifiers are constructed by FIS, FIS in 
turn use locally mapping production rules and the 
purpose of training is to adjust these production rules. 
Furthermore, changing the shape of membership 
functions is not the objective. Only levels are of 
interest. For that reasons the equation 2 is reduced to 
equation 3. 
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The aim of regression analysis is to define the 
undefined parameter of the parameterised function, 
which in case of Equation 3 is only a0. For parameter 
definition, regression analysis most often uses the 
minimum square error method (equation 4).  
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The least square error method is derived from the 
Euclidian norm, which is the most descriptive norm at 
all. In order to define a0, the Equation 4 has to be 
differentiated first. Secondly, the derivate must be set 
to zero and then finally solved for a0. The result of the 
calculation is given by equation 5. 
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Obviously the first part of equation 5 defines a0 as the 
arithmetic mean of all pi. The arithmetic mean in turn 
is an estimating function for the expectation value 
E(P). P is the random variable of the statements of all 
training data pi, where pi is either “thermal fault (high 
temperature)” or not “thermal fault (high 
temperature)”. The law of large numbers says: The 
more training data, the better the estimation of the 
expectation value. The second part of equation 5 is 
defined as the weighted arithmetic mean. The first and 
the second part are equal, when p is equal to p1, p1,…, 
pn-1. The second part is used in Figure 7, lines 8-9, 
where the training algorithm iteratively calculates the 
new conclusion of a production rule. 

4. MERGING METHODS IN A CONDITON 
TREE 

Previous paragraphs give hints to improve a classifier 
of a certain interpretation method. Each interpretation 
method uses an individual classifier to state the 



probability of a couple of conditions. Among all 
conditions there are conditions which can be identified 
by all classifiers and some conditions which can be 
only identified by a subset of classifiers. It is up to this 
paragraph to show how these classifiers can be joined. 

In the first instance, each classifier needs to have a 
separate condition tree. Keeping the example of 
General Electric, its condition tree is exposed by 
Figure 8. 

 
Figure 8: Condition tree of General Electric. 

It is a hierarchical condition tree, where each node 
holds twice: At first it holds the probability (P) of a 
certain transformer condition. At second it holds the 
reliability (R), which indicates the reliability of the 
probability estimation. General Electric’s classifier 
itself identifies only a subset of these conditions, 
namely “not defined”, electrical fault”, “high 
temperature” and “low temperature”. For these 
conditions the probability is given by the classifier and 
the reliability is given by the product of the weight of 
the most important production rule and the trust factor. 
Thus, it is necessary to calculate the possibilities and 
reliabilities of the remaining nodes. 

Among all successor nodes of a node, the reliability of 
the node is defined as the reliability (R) of the 
successor node (Succi) with the highest probability 
(MaxP) (Equation 6). Meanwhile among all successor 
nodes of a node the probability (P) of the node is taken 
as the probability of the successor node with the 
highest probability (Equation 7). The algorithm that 
calculates each node’s probability and reliability runs 
bottom up, beginning with the lowermost nodes and 
ending with the root. 
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At least one additional classifier is needed to merge 
classifiers in an entire condition tree. The paper deals 
with the classifier of Doernenburg Ratios. That is to 
save space, because the related condition tree (Figure 
9) is rather compact as it is the condition tree of 
General Electric (Figure 8). Again, the classifier is only 
able to identify a subset of conditions, namely “not 
defined”, “partial discharge”, “discharge” and 
“thermal”. All remaining nodes must be calculated 
according to the procedure mentioned for the condition 
tree of General Electric. 

 
Figure 9: Condition tree of Doernenburg Ratios. 

Figure 10 shows the entire condition tree. It spans its 
both parental trees, namely the condition trees of 
“General Electric’ and “Doernenburg Ratios”. Thus, it 
is self-evident that all its nodes have a corresponding 
node in at least one of the parental trees. While “partial 
discharge” and “discharge” or “high temperature” and 
“low temperature”, respectively, have corresponding 
nodes in just one parental tree, all the other nodes have 
corresponding nodes in both parental trees.   

 
Figure 10: Entire condition tree spanning General 
Electric’s and Doernernburg Ratios’ condition tree. 

For the entire condition tree, each node’s reliability (R) 
is defined as the sum of the reliabilities of the 
corresponding parental nodes (Pari) (Equation 8). Each 
node’s probability (P) is defined as the weighted 
possibilities of the corresponding parental nodes 
(Equation 9). 
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5. APPLICATION OF THE NEW METHOD 

In order to show the performance of the introduced 
strategies, a real-life measurement is given by example. 
The example is about a defective 385MVA generator 
transformer. The fault is identified as partly broken 
conductor by inspection. The impacts are hot spot and 
partial discharge, whereby partial discharge touches 
cellulose isolation. The transformer oil contained the 
following gases in parts per million: hydrogen (300), 
methane (1740), acetylene (< 1), ethylene (3500) and 
ethane (1190). Initially, these gases are evaluated by 
the original classifiers of General Electric and 



Doernenburg Ratios. Moreover, these gases are 
interpreted by the combined trained fuzzy classifiers of 
General Electric and Doernenburg Ratios (Figure 11).  

The original General Electric classifier states “thermal 
fault (high temperature)”. Doernenburg Ratios in turn 
detects the more general fault “thermal fault”. 
According to that, both classifiers only identify the 
thermal part (hot spot) of the complex real-world fault 
(hot spot, partial discharge and degradation of 
cellulose). If one look at Figure 11, the condition tree 
shows a more diversified condition view. Starting with 
the first floor, just after root, the transformer condition 
is most probably identified as “fault” (P=64%), while 
there is a chance to have an “undefined condition” 
(P=31%) as well. On the second floor the fault most 
likely appears as “thermal fault” (P=64%), while there 
is a smaller portion of “electrical fault” (P=10%). On 
the third floor “thermal fault” branches in “thermal 
fault (low temperature)” (P=1%) and “thermal fault 
(high temperature)”, which is the most likely fault 
(P=55%). The “electrical fault” cannot be further 
specified. To sum up, the condition tree states that the 
most dominant fault is “thermal fault (high 
temperature)”, but in addition it states an “electrical 
fault”, which is less dominant. The participation of 
cellulose cannot be stated, because this condition is not 
represented in the condition tree. 

 
Figure 11: Entire condition tree, where each node’s 
probability and reliability is identified. 

In addition, each condition’s probability is rated by the 
reliability R, which is the amount of training data 
supporting the probability. While the detailed 
conditions on the third floor are only identified by one 
parental tree (lower reliabilities), the more general 
conditions of the first and second floor are identified 
by both parental trees (higher reliabilities). In summary 
it can be stated, the more detailed conditions, the less 
reliable and the other way around. 

6. CONCLUSIONS 

At first the strategy of fuzzy-modelling was applied. 
Therefore classifiers of diagnostic methods are re-
modelled by FIS. Fuzzy classifiers avoid the 
identification of completely different conditions in case 

of similar gas values. It therefore replaces thresholds 
by condition probabilities. As a consequence of this, 
fuzzy classifiers are able to handle complex faults.  

Secondly, the adjustment-strategy was applied. It uses 
a training technique in order to further improve the 
classifier’s accuracy and reliability. The training 
method implements the arithmetic mean algorithm. It is 
proven that the more (accurate) training data is used, 
the better the classifier approximates the ideal 
expectancy value classifier. However the arithmetic 
mean training is somehow sensitive to the so called 
runaways. It is worth a try to implement a median 
value training algorithm. It would be less sensitive to 
runaways and could also approximate the expectancy 
value classifier. 

The final strategy merged trained classifiers in order to 
extend the amount of identifiable conditions and in 
order to improve the accuracy and reliability of 
condition identification. Conditions were hierarchically 
ordered according to their levels of detail. The more 
specific the condition, the less reliable is the estimation 
of its probability and the other way around. So it is up 
to the user if he prefers details or reliability.  
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