
Neural Network for Transformer Top-oil Temperature Prediction 

R. Vilaithong1*, S. Tenbohlen1 and T. Stirl2 
1Institute of Power Transmission and High Voltage Technology, University of Stuttgart, 

Pfaffenwaldring 47, 70569 Stuttgart, Germany 
2 Areva Energietechnik GmbH, Activity Schorch Transformers 

Rheinstrasse 73, 41065 Moenchengladbach, Germany 
*Email: rummiya.vilaithong@ieh.uni-stuttgart.de 

 

 
Abstract: In this paper, several simple Multilayer Feed-
forward network structures for transformer top-oil 
temperature prediction are proposed and are trained 
with several Backpropagation training algorithms. Last-
state of measured top-oil temperature, load current, 
ambient temperature and operating states of pumps and 
fans are applied as inputs of the networks. The neural 
network structures are later compiled to mathematical 
models for top-oil temperature calculation at varying 
load current and ambient temperature. The calculations 
are performed in long-term investigation for several 
transformer units with different modes of cooling. 
Performance of the networks is determined by a 
deviation between calculated and measured top-oil 
temperature. The performance from neural network 
model is also compared with the performance from 
semi-physical model. Investigations show that the top-
oil temperature prediction from neural network model is 
sufficient for use in an on-line monitoring system and 
produces accurate results in case of rapid ambient 
temperature change. 

1 INTRODUCTION 

Aging of oil immersed cellulose insulation in power 
transformer depends mainly on its thermal load. In order 
to keep power transformers longer in service, it is worth 
to pay particular attention on their thermal behaviour. 
On-line transformer top-oil temperature prediction is an 
opportunity for diagnosis of the thermal behaviour of 
power transformers. Through an on-line comparison of 
the measured top-oil temperature values and its 
predicted values, some operational problems such as a 
malfunction of pumps or fans or a pollution of coolers 
can be detected. 

A basic method for top-oil temperature calculation 
from the IEEE/ANSI C57-115 standard [1] has been 
accepted for decades. However, this fundamental model 
has a limitation of an accurately account due to an effect 
of variation in ambient temperature. B. C. Lesieutre [2] 
has later proposed a modified top-oil temperature model 
based on a concept originally developed from the IEEE 
top-oil rise temperature model by considering the 
ambient temperature at the first-order characterization 
as shown in (1).  
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where τTO is the  top-oil time constant, ϑTO is the top-
oil temperature, ϑamb is the  ambient temperature and 
θTO, ∞  is the ultimate top-oil rise temperature. 

By using forward Euler approximation for a time 
derivative and by applying linear regression technique 
for the force cooling state n =1, the equation above is 
expressed again by D. J. Tylavsky [3] as a simplified 
semi-physical model in (2), where parameter J1, J2, J3 
and J4 can be obtained from parameter estimation 
method. 
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The model from (2) and some other proposed top-oil 
temperature models were investigated in [4], [5] in 
long-term periods with varying load and ambient 
temperature. They were also applied in different cooling 
types of transformer units. Results from some models 
showed the deviations between measured and calculated 
top-oil temperature less than 2 K. However, since an 
artificial neural network presents a growing new 
technology as indicated by a wide range of applications, 
it has become an important tool in modern numerical 
calculation. Therefore, there is also an interest for 
transformer top-oil temperature prediction using neural 
networks. Several studies have been already presented, 
using neural networks as a tool to improve the accuracy 
of the top-oil temperature calculation  [6], [7], [8]. 
Nevertheless, these investigations are presented only 
with short-term periods and their application to 
transformers in the field was not tested.  

2 INTRODUCTION TO NEURAL 
NETWORKS 

Neural network or artificial neural network (ANN) 
refers to an interconnecting group of artificial neurons 
that uses a mathematical model or a computational 
model designed to model some properties of biological 
neural networks. In more practical term, neural 
networks are non-linear statistical data modelling tools. 
They can be used to model complex relationships 
between inputs and outputs or to find patterns in data. 
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An attraction of neural networks is that they are best 
suited to solve the problems that are most difficult to 
solve by traditional computational methods. 

2.1 Feed-forward Architecture 

Feed-forward neural networks are the most popular 
and most widely used models in many practical 
applications. They have been being applied successfully 
to solve some complex problems including nonlinear 
system identification and control, financial market 
analysis, signal modelling, power load forecasting, etc.  

Feed-forward neural networks are composed of 
many computing elements, called neurons, working in 
parallel. The elements are connected by weights, which 
are allowed to be adapted through a learning process. 
The weights on these connections encode the 
knowledge of a network.  An input unit represents raw 
information that is fed into a network and connected to 
an output layer through one or more layers, which called 
hidden layer (Fig. 1). Number of hidden layers and 
number of neurons in each hidden layer are user design 
parameters. The general rule is to choose these 
parameters so that the best possible model with as few 
parameters as possible is obtained.  

Every unit in the layer is connected with all units in 
the next layer. Each connection may have different 
strength or weight. Data enter at the inputs and pass 
through the network, layer by layer to the next, until 
they arrive at the outputs. There is no feedback between 
layers. No unit is linked between the same layer, back to 
the previous layer or skipping the layer. This is why 
they are called feed-forward neural networks.  

 
Fig. 1: Feed-forward neural network 

The behaviour of the output units depends on the 
activity of the hidden units and the weights between the 
hidden units and output units. The outputs can be 
obtained from taking a linear combination of input 
signals and their weights, then transform them with an 
activity function. Each neuron starting from the hidden 
layer is usually transformed with a nonlinear (sigmoid 
or hyperbolic tangent) activation function and the 
activation function in the output layer can be either 
nonlinear (a nonlinear-nonlinear network) or linear (a 
nonlinear-linear network). The output of the network 
can be written in mathematical form as presented in (3). 

( )∑ −= n

i ii 㮀xw㰰y  (3) 

where y is the output, xi is the input, wi is the neuron 
weight, θ is the bias term (another neuron weight) and 
σ is the activity function. 

The network weights are adjusted by training the 
network. The training process involves adjusting the 
weights till an aim is obtained. The aim involves 
minimizing the sum of squares of the differences 
between desired and actual outputs. The network 
learning is carried out by repeatedly feeding the input-
output patterns to the network. One complete entire 
training set is called an epoch. There are a number of 
such learning rules available for neural network models. 
The delta rule is one of the most commonly used 
learning rules. It is also called the Least Mean Square 
(LMS) method. For a given input vector, an output 
vector is compared to a correct answer. If the difference 
is zero, no learning takes place, otherwise, the weights 
are adjusted to reduce this difference. The change in 
weight w from output ui to uj is given by (4), where r is 
the learning rate, ai represents the activation of ui and ej 
is the difference between the expected output and the 
actual output of uj [9]. If the set of input patterns form a 
linearly independent set then arbitrary associations can 
be learned using the delta rule. 

jiij earw **=∆  (4) 

2.2 Backpropagation training algorithms 

Backpropagation is an algorithm that extends the 
analysis of the delta rule to the networks with hidden 
nodes. It was created by generalizing the Widrow-Hoff 
learning rule to multiple-layer networks and non-linear 
differentiable transfer functions. Input vectors and 
corresponding target vectors are used to train a network 
unit. It can approximate a function, associate input 
vectors with specific output vectors, or classify input 
vectors in an appropriate way as defined by analyst. It 
computes the error term for the output units using the 
observed error. The model repeat propagating the error 
term back from output layer to the previous layer and 
updating the weights between the two layers until the 
earliest hidden layer is reached. Whereas, weights 
between neurons of successive layers are initially 
assigned in random. The speed and accuracy of the 
learning process, that is the process of updating the 
weights, also depends on a factor known as the learning 
rate.  
2.2.1 Levenberg-Marquardt backpropagation 

(trainlm)  
The Lavenberg-Marquardt algorithm uses an early 

stopping criterion to improve network training speed 
and efficiency. To determine the criterion, all the data 
are divided into three sets. The first set is the training set 
for determining the weights and biases of the network. 
The second set is the validation set for evaluating the 
weights and biases and for deciding when to stop 
training. The validation error normally decreases at the 
beginning of the training process. When the network 
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starts to over-fit the data, the validation error begins to 
increase. The training is stopped when the validation 
error begins to increase and the weights and biases will 
then be derived at the minimum error. The last data set 
is for validating the weights and biases to verify the 
capability of the stopping criterion and to estimate the 
expected network operation on new data sets. 
2.2.2 Scaled conjugate gradient backpropagation 

(trainscg) 
The Scaled conjugate Gradient, developed by Moller 

[10], is based on a well-known optimization technique 
in numerical analysis called the Conjugate Gradient 
Method. It was designed to avoid the line search per 
learning iteration by using a Levenberg-Marquardt 
approach in order to scale the step size. The basic idea is 
to combine the model-trust region approach with the 
conjugate gradient approach. Unlike many other 
standard backward propagation algorithms, this 
technique does not require any user-specified 
parameters and its computation is faster.  
2.2.3 Automated Bayesian Regularization (trainbr) 

Bayesian regularization is a modification of the 
Levenberg-Marquardt training algorithm to improve the 
model’s generalization. Over-fitting problem or poor 
generalization capability happens when a neural 
network over learns during a training period. As a 
result, such a too well trained model may not perform 
well on unseen data set due to its lack of generalization 
capability. This approach involves modifying the 
performance function, which is normally chosen to be 
the sum of squares of the network errors on the training 
set (MSE or Ed). 
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The objective function in (5) is possible to be 
generalization improved if it is added by a term Ew, that 
is the sum of squares of the network weights (6).  

wd EEF αβ +=  (6) 
The β and α parameter are optimized in Bayesian 

framework of MacKay [11], [12] . It is assumed that the 
weights and biases of the network are random variables 
following Gaussian distributions and the parameters are 
related to the unknown variances associated with these 
distributions. Using this performance function will 
cause the network to have smaller weights and biases, 
and this will force the network response to be smoother 
and less likely to over-fitting.  

3 PREDICTION OF TOP-OIL 
TEMPERATURE   

In present section, one-hidden layer and two-hidden 
layer feed-forward networks with various numbers of 
neurons were structured. These networks were trained 
with three different backpropagation training algorithms 
as mentioned in 2.2. The works were divided into two 

steps. First, the networks with one hidden layer were 
investigated with a number of neurons from 1-20 
neurons. In the second step, the models were further 
constructed with two hidden layers and with a number 
of hidden neurons between 1-5 neurons in both hidden 
layers. Measured data of three transformer units 
provided by an on-line monitoring system MS 2000 [13] 
were applied as inputs to the models during training 
process. These inputs were last-state of measured top-oil 
temperature, load current, ambient temperature and 
operating states of pumps and fans. The interval time of 
each data set was vary. The specifications of these three 
transformers are shown in Tab. 1. It has been noted that 
there were different types of cooling systems. The 
operating states of the cooling units of Transformer 2 
(Tr2) remained constant during the investigated period 
(number of fans operated = 2). Whereas, the cooling 
operating states of Transformer 3 (Tr3) were varied 
among five states as can be seen from Tab.2.  
Tab. 1: Investigated power transformer main characteristics 

Transformer Tr1 Tr2 Tr3 
Rated power [MVA] 40 150 850 
Rated Voltage [kV] 110 245/36/6 21/220 
Short-circuit loss [kW] 135 414.2 2060 
No-load loss [kw] 20 67.52 370 
Type of cooling ONAN ONAF ODAF 

 The measured data from year 2004 of Tr1 were 
collected from a whole year. While, a whole-year 
measured data of Tr2 were collected from year 2003. 
The data from January until May of Tr1 and Tr2 were 
applied to be a train data set of the networks. Whereas, 
the data from June until December were applied to be a 
test data set of the models. The measured data for Tr3 
were collected from both year 2003 and year 2004. 
Therefore, the data from year 2003 were used as train 
data and the data from year 2004 were used as test data. 
The calculation of the top-oil temperature is the testing 
process of the networks. It was performed at varying 
load current and ambient temperature in long-term 
investigation. The performances of the networks were 
determined by the average deviations between 
calculated and measured top-oil temperature. 
Tab. 2: States of pumps and fans in operation of Tr3   

State Number of pumps Number of fans 
1 8 0 
2 8 2 
3 8 4 
4 8 6 
5 8 8 

4 RESULTS AND DISCUSSION 

After the training process, all investigated neural 
network structures were interpreted to the mathematical 
models for the top-oil temperature calculation. The 
weights and biases were transformed to be the 
coefficients of the models. The standard sigmoid 
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nonlinear activation function was chosen to be a smooth 
step function. The expression of sigmoid function can 
be seen from (7), where x is the weighted sum of all 
inputs and the biases of neurons [9]. 
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Fig. 2 is an example for algorithm structure of feed-
forward neural network model with one hidden layer. 
These algorithms can be written in a general 
mathematical form as shown in (8). This mathematical 
model, along with optimized weights and biases 
obtained from training process, was later applied to the 
testing data for calculating the top-oil temperature. 
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where ij is input of the network, j is input number, 
wkj is weight connection from input to the neuron in 
hidden layer, k is neuron number in hidden layer, J is 
total number of inputs, h is neuron number in output 
layer and H is total number of neurons in output layer. 

 
Fig. 2: Example of one hidden layer feed-forward structure 
with weights and biases. 

4.1 Comparison of training time among different 
backpropagation training algorithms 

Speed of the network training process can range 
from a few seconds to many hours, depending on the 
factors such as the number of weights in the networks, 
the number of training examples considered and the 
setting of various learning algorithm parameters. In this 
paper, the training time of each training function was 
also investigated. The one-hidden layer networks with 
number of hidden neurons 1, 10 and 20 are examined. 
As seen from Tab. 3, the Levenberg-Marquardt training 
algorithm shows the shortest training time for all results 
of investigated transformers. Whereas, the Bayesian 
regularization presents the longest time. This training 

time is proportional to the number of neurons in hidden 
layer and to the data size of investigated transformers. 
Tab. 3: Training time for each training algorithm  

Training time (s)  Tr Data 
Size 

Number of 
Neurons trainbr trainlm trainscg 

1 2 0.4 3 
10 57 3 16 

Tr1 27343 

20 78 11 33 
1 3 2 6 

10 58 20 29 
Tr2 34753 

20 123 40 56 
1 8 2 31 

10 323 41 146 
Tr3 118453 

20 739 66 258 

4.2 Comparison among different learning 
algorithms for one-hidden layer networks 

The average top-oil temperature deviations 
calculated from the one-hidden layer feed-forward 
network trained from three different training functions 
are shown in Fig. 3 - Fig. 5. The results present the 
deviations from different networks with various 
numbers of hidden neurons. The Bayesian 
regularization training algorithm has a better 
performance than others. The lowest temperature 
deviations are found from the network with eighteen 
neurons, thirteen neurons and seventeen neurons for 
Tr1, Tr2 and Tr3 respectively.  
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Fig. 3: Temperature deviation compared among different 
training algorithms of Tr1 
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Fig. 4: Temperature deviation compared among different 
training algorithms of Tr2 
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Fig. 5: Temperature deviation compared among different 
training algorithms of Tr3 

4.3 Comparison among different learning 
algorithms for two-hidden layer networks 

The Bayesian regularization training algorithm was 
applied as the training function for the models with two 
hidden layers. The sigmoid transfer function was 
applied in the first hidden layer and the linear transfer 
function was applied in second hidden layer. As seen 
from the results in 4.2 that the networks structured with 
the number of hidden neurons from 1 to 5 also perform 
the satisfy results and the average temperature 
deviations from all three transformers are less than 2 K 
when the models are trained with the Bayesian 
regularization training algorithm. Thus, the further 
investigations were done with the networks with the 
number of hidden neurons from 1 to 5 in both hidden 
layers. Consequently, in this section, there were 25 
models to be investigated.  
Tab. 4: Results of different networks comparison of Tr1 

Number of hidden neurons Selected 
Network model  First layer Second layer  

Temperature 
deviation (K)  

1 2 2 4.1 
2 2 2 4.9 
3 3 3 4.0 
4 3 3 5.3 
5 4 4 5.3 

Tab. 5: Results of different networks comparison of Tr2 

Number of hidden neurons Selected 
Network model  First layer Second layer  

Temperature 
deviation (K)  

1 1 2 6.6 
2 1 3 6.6 
3 1 5 6.6 
4 2 5 6.7 
5 2 1 6.7 

Tab. 6: Results of different networks comparison of Tr3 

Number of hidden neurons Selected 
Network model  First layer Second layer  

Temperature 
deviation (K)  

1 2 1 2.2 
2 2 2 2.2 
3 3 1 2.2 
4 3 5 2.1 
5 5 1 2.2 

Tab. 4 – Tab. 6 show the average temperature 
deviations between measured top-oil temperature and 
the top-oil temperature calculated from these different 
neural network models. The tables present the results 
from five models, which show the best results. It is 
found that the average temperature deviations calculated 
of various two-hidden layer neural network models are 
in the same range. Besides, it is found that the results 
from the networks with one-hidden layer show the 
better performance than the results from two-hidden 
layer networks.  

4.4 Comparison between Network Model and Semi-
physical Model 

The average results of some periods from feed-
forward networks trained by Bayesian regularization 
training algorithm with one-hidden layer and eighteen 
hidden neurons, thirteen hidden neurons and seventeen 
hidden neurons for Tr1, Tr2 and Tr3 respectively are 
compared with the results from semi-physical model as 
presented in [5]. Tab. 7 presents that the neural network 
models also show the accuracy in top-oil temperature 
calculating almost in the same level as the results from 
semi-physical models.  

Tab. 7: Average top-oil Temperature deviations compared 
between neural network models and the semi-physical models  

Transformer Neural Network (K) Semi-physical (K) 
Tr1 1.8 1.9 
Tr2 2.2 1.2 
Tr3 1.1 1.5 

The top-oil temperature calculated by means of 
neural network models and semi-physical models from 
the periods as mentioned above are depicted in Fig. 6 – 
Fig. 8 for Tr1, Tr2 and Tr3 respectively. It can be seen 
that the neural network models could also give accurate 
calculated results as the results calculated from the 
semi-physical models. 
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Fig. 6: Measured and calculated top-oil temperature results 
from neural network model and semi-physical model of Tr1 
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Fig. 7: Measured and calculated top-oil temperature results 
from neural network model and semi-physical model of Tr2 

01.04.2004 08.04.2004 15.04.2004 22.04.2004 29.04.2004
26

28

30

32

34

36

38

40

42

44

46

48

50

52

 

 

To
p-

oi
l t

em
pe

ra
tu

re
 (°

C
)

Time

 Measured top-oil temperature
 Semi-physical model
 Neural network model

 
Fig. 8: Measured and calculated top-oil temperature results 
from neural network model and semi-physical model of Tr3 

5 CONCLUSION 

A brief introduction of feed-forward neural network 
together with some backpropagation learning algorithms 
was given in this paper. Several multilayer feed-forward 
neural network models for top-oil temperature long-
term prediction were examined. The models were 
different in a number of hidden layers, a number of 
neurons and learning algorithms. Measured data of three 
transformer units provided by an on-line monitoring 
system MS 2000 were applied to the models. Last-state 
of measured top-oil temperature, load current, ambient 
temperature and operating states of pumps and fans 
were selected as inputs of the networks. Results show 
that the Bayesian regularization-training algorithm 
provides best performance in term of temperature 
deviation between measured and calculated top-oil 
temperature. Whereas, the Levenberg-Marquardt 
backpropagation training algorithm provides best 

performance in training time investigation. It is found in 
all investigated transformers that the average 
temperature deviations calculated from the models with 
one hidden layer are lower than the models with two 
hidden layers. The good performance in top-oil 
temperature calculation from each transformer can be 
found in the models with different number of neurons. 
When the results from neural network models are 
compared with the results from semi-physical models,  
investigations show that the performances from both 
neural network models and semi-physical models are 
nearly similar, the average temperature deviations are 
less than 2 K. Therefore, the predictions from both 
models are sufficient for use in an on-line monitoring 
system. Furthermore, the neural network models also 
produce accurate results in the case of rapid ambient 
temperature change. 
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