Einfluss der Kurzschlussdauer auf die Alterung eines Transformators

T. Hayder Z. Radakovic L. Schiel K. Feser

1. Einleitung

Dipl.-Ing. Tamam Hayder ist Doktorand am Institut für Energieübertragung und Hochspannungstechnik (IEH) der Universität Stuttgart.

Dr.-Ing. Zoran Radakovic ist Forschungsstipendiat der Alexander von Humboldt-Stiftung am Institut für Energieübertragung und Hochspannungstechnik (IEH) der Universität Stuttgart.

Dr.-Ing. Ludwig Schiel ist Projektleiter für Transformatordifferentialschutz in der Entwicklung des Siemens-Bereichs Power Transmission and Distribution in Berlin.

Prof. Dr.-Ing. Dr. h. c. Kurt Feser ist Institutsdirektor am IEH der Universität Stuttgart.
2. Berechnung des Temperaturverlaufs
2.1 Normaler Betrieb

Nach IEC 60354 [2] wird die Heißpunktemperatur einer Transformatorwicklung abhängig von der Kühlungsart berechnet, bei OF Kühlung lautet die Gleichung:

\[\theta_{hp} = \theta + \theta_{\text{öl-unten},n} \left(\frac{1+RK^2}{1+R} \right)^x + 2 \left(\theta_{\text{öl-unten},n} - \theta_{\text{öl-unten},n} \right)K^y + H \theta_{\text{öl}-\text{öl},n} K^y \]

(1)

Für die mittlere Wicklungstemperatur gilt:

\[\theta_{\text{öl-mitte}} = \theta + \theta_{\text{öl-unten},n} \left(\frac{1+RK^2}{1+R} \right)^x + \left(\theta_{\text{öl-mitte},n} - \theta_{\text{öl-unten},n} \right)K^y + \theta_{\text{öl}-\text{öl},n} K^y \]

(2)

und für die Eintrittstemperatur des Kühlöls in die Wicklung:

\[\theta_{\text{öl-unten}} = \theta_{\text{öl-unten}} - \theta_{\text{öl-unten},n} \left(\frac{1+RK^2}{1+R} \right)^x \]

(3)

wobei

- \(K \) Lastfaktor
- \(H \) Heißpunktfaktor
- \(x \) Ölexponent
- \(y \) Wicklungsexponent
- \(R \) Verlustwiderstand
- \(q_{\text{öl-unten},n} \) Eintrittstemperatur des Kühlöls in die Wicklung bei Nennbetrieb(K)
- \(q_{\text{öl-mitte},n} \) Mittlere Öltemperatur in einer Wicklung bei Nennbetrieb(K)
- \(q_{\text{Cu}-\text{öl},n} \) Differenz zwischen Leiter- und Öltemperatur bei Nennbetrieb(K)
- \(J\phi \) Umgebungstemperatur (°C)

Die typischen Parameter des Modells für OF-Kühlung sind im Standard gegeben zu:

\(H=1,3, x=1,0, y=1,6, R=6, q_{\text{öl-unten},n}=36 K, q_{\text{öl-mitte},n}=46 K \) und \(q_{\text{Cu}-\text{öl},n}=17 K \)

Der Lastfaktor und das Verlustverhältnis sind folgendermaßen definiert:

\[K = \frac{I}{I_n} \text{ und } R = \frac{P_{Cu,n}}{P_{Fe,n}} \]

wobei

- \(I \) Strom (A)
- \(I_n \) Nennstrom (A)
- \(P_{Cu,n} \) Nennkurzschlussträgerverluste (W)
- \(P_{Fe,n} \) Nennleerlaufverluste (W)

Das thermische Verhalten eines Transformators wird durch das in Bild 1 dargestellte Ersatzschaltbild beschrieben. Es beruht auf einem verbesserten Zweikörperrmodell, welches die inneren und äußeren Wärmetübergänge beschreibt und den nichtlinearen Wärme-übertragsmechanismus der Konvektion beinhaltet [3].

Bild 1 - Das thermische Ersatzschaltbild eines Transformators im normalen Betrieb.

\[P_{Cu} \] Kupferverluste (W)
\[P_{Fe} \] Eisenverluste (W)
\[C_{th1} \] Wärmekapazität der Wicklung (J/K)
\[C_{th2} \] Wärmekapazität des Kühlöls, des Eisenkerns und der Konstruktionsteile (J/K)
\[R_{th1} \] Wärmewiderstand der Wicklungsisolierung (K/W)
\[R_{th2} \] Äußerer Wärmewiderstand (K/W)

Die Wärmekapazitäten werden näherungsweise aus den Massen der einzelnen konstruktiven Komponenten und den dazu gehörigen spezifischen Wärmekapazitäten gebildet:

\[C_{th1} = m_{Cu} \cdot c_{Cu} \]
\[C_{th2} = m_{Fe} \cdot c_{Fe} + m_{öl} \cdot c_{öl} \]

wobei

- \(c_{Cu} \) Spezifische Wärmekapazität der Wicklung (J/kg)
- \(c_{Fe} \) Spezifische Wärmekapazität des Eisens (J/kg)
- \(c_{öl} \) Spezifische Wärmekapazität des Öls (J/kg)
- \(M_{Cu} \) Kupfermasse (kg)
- \(M_{öl} \) Ölmasse (kg)
- \(M_{Fe} \) Eisen- und Kesselmasse (kg)

Bei der Berechnung der thermischen Widerstände muss das nichtlineare Verhalten des Wärmeübertragungsmechanismus berücksichtigt werden. Dem wird durch die folgenden Beziehungen Rechnung getragen [3]:

\[R_{th1} = \frac{R_{th2}}{\left(\theta_1 - \theta_2 \right)^n} \]

(6)

und

\[R_{th2} = \frac{R_{th2}}{\theta_2} \]

(7)

Die Parameter \(R_{th10}, R_{th20}, n_1 \) und \(n_2 \) werden experimentell aus dem transienten Temperaturverlauf eines Wärmelaufs ermittelt.
Zwischen der Norm und dem Ersatzschaltbild besteht eine eindeutige Beziehung. Die Temperaturen q_1 und q_2 in thermischen Ersatzschaltbild entsprechen den Temperaturen $(I_{KS}$-$I_k)$ und $q_{\text{Öl-Mitte}}$ nach [2]. Die Beziehungen zwischen den Parametern sind wie folgt:

$$R_{\text{th}1} = \frac{R_{\text{al}, n} \left(\theta_{1, n} - \theta_{2, n} \right)}{P_{\text{Cu}, n}}$$

$$= \left(\frac{2}{\theta_{\text{Öl-Mitte}, n} - \theta_{O_1 - \text{untere}}, n} + H \left(\frac{\theta_{\text{Cu} - \text{mitte}, n} - \theta_{\text{Öl-Mitte}, n}}{P_{\text{Cu}, n}} \right) \right)^{n+1}$$

$$R_{\text{th}2} = \frac{R_{\text{th}, n} \theta_{2, n}}{P_{\text{Cu}, n} + P_{\text{Fe}, n}}$$

$$= \frac{\left(\frac{2}{x} \right)^{n+1}}{\left(\frac{1}{x} \right)^{n+1}}$$

wobei θ : Windungsexponent und y : Ölexponent.

2.2 Kurzschlussphase

![Diagramm](image)

Bild 2 - Das thermische Ersatzschaltbild eines Transformators in der Fehler- und Nachfehlerphase.

P_{KS} Kupferverluste in Fehlerphase (W)

S_1 Schalter (geschlossen in Fehlerphase und geöffnet in Nachfehlerphase)

S_2 Schalter (geöffnet in Fehlerphase und geschlossen in Nachfehlerphase)

Während der Fehlerphase sind die Eisenverluste im Vergleich zu den Kupferverlusten vernachlässigbar gering. Während der Fehlerphase wird angenommen, dass die vom Kurzschlussstrom umgesetzte Wärmenergie nur zur Temperaturerhöhung der Wicklung führt, da die Wärmestrahlung, die umgebende Öl infolge der kurzen Zeit gering ist.

Die Anfangstemperaturen beim Fehlereintritt entsprechen denen aus dem vorigen normalen Betriebszustand berechnet.

In der Zeit dt während der Kurzschlusssstrom I fließt wird die Wärmemenge dq freigesetzt:

$$dq = I^2 \cdot R \cdot dt$$

Der ohmsche Widerstand der Wicklung (R) ist temperaturabhängig.

$$R = \frac{l}{\chi_{\text{Cu}}} \left[\frac{1 + \alpha_{\text{Cu}}}{ \chi_{\text{Cu}}} \left(\frac{\theta_{\text{Cu-Mitte}} - 20}{} \right) \right]$$

α_{Cu} Temperaturkoefizient des elektrischen Widerstandes ($1/\degree C$)

c_{Cu} Spezifische Leitfähigkeit des verwendeten Leitermaterials bei $20 \degree C$ (S/m)

A Leiterquerschnitt (m2)

l Länge des Leiters (m)

Es ist nun möglich den Temperaturverlauf in der Kurzschlussphase analytisch zu bestimmen. Zwischen der Zunahme der Wicklungstemperatur und der erzeugten Wärmemenge besteht folgende Zusammenhang:

$$dq = M \cdot c_{\text{Cu}} \cdot d \theta_{\text{Cu-Mitte}} = I \cdot A \cdot \gamma_{\text{Cu}} \cdot c_{\text{Cu}} \cdot d \theta_{\text{Cu-Mitte}}$$

M Gesamte Masse der Wicklung (kg)

g_{Cu} Dichte des Kupferleitermaterials (kg/m3)

Für den Temperaturanstieg $dI_{\text{Cu-Mitte}}$ im Zeitintervall dt ergibt sich damit folgender Ausdruck:

$$d \theta_{\text{Cu-Mitte}} = \frac{I^2}{A^2 \cdot c_{\text{Cu}} \cdot \gamma_{\text{Cu}}} \left[\frac{1 + \alpha_{\text{Cu}}}{\chi_{\text{Cu}}} \left(\frac{\theta_{\text{Cu-Mitte}} - 20}{} \right) \right]$$

Durch Integration erhält man den Temperaturanstieg in der Zeit während des Kurzschlusses:

$$\theta_{\text{Cu-Mitte}} = 20 + \frac{I}{A} \left[\frac{1 + \alpha_{\text{Cu}}}{\chi_{\text{Cu}}} \left(\frac{\theta_{\text{Cu-Mitte}} - 20}{} \right) \right]$$

Hierin ist $\sigma = \frac{I}{A}$ die Kurzschlussstromdichte und $I_{\text{Cu-Mitte}}, l$ die mittlere Kupferstromdichte zum Zeitpunkt des Kurzschlussereintritts.

Die Heißpunktttemperaturen während des Kurzschlusses kann nun wie folgt berechnet werden:

$$\theta_{\text{Hs}} = \theta_{\text{Hs}, 1} + \left(\theta_{\text{Cu-Mitte}} - \theta_{\text{Cu-Mitte}, 1} \right)$$

wobei $\theta_{\text{Hs}, 1}$ wiederum die Heißpunktttemperaturen zum Fehlereintrittszeitpunkt ist.

Tabelle 1 enthält die hier verwendeten Konstanten und ihre Einheiten.
2.3 Nachfehlerphase

Nach Abschaltung des Fehlers ergeben sich aus Bild 2 die für die Nachfehlerphase gültigen Knotengleichungen:

Knoten 1: \[C_{ki} \frac{d\theta_1}{dt} = -\frac{(\theta_1 - \theta_2)^{n+1}}{R_{ki0}} \]

Knoten 2: \[C_{k2} \frac{d\theta_2}{dt} = -\frac{(\theta_1 - \theta_2)^{n+1}}{R_{k20}} - \frac{\theta_2^{n+1}}{R_{k20}} \]

Für die numerische Berechnung werden die Differentialgleichungen als Differenzgleichungen angeschrieben:

\[C_{ki} \frac{\theta_{1,i+1} - \theta_{1,i}}{\Delta t} = -\frac{(\theta_{1,i} - \theta_{2,i})^{n+1}}{R_{ki0}} \]

\[C_{k2} \frac{\theta_{2,i+1} - \theta_{2,i}}{\Delta t} = -\frac{(\theta_{1,i} - \theta_{2,i})^{n+1}}{R_{k20}} - \frac{\theta_{2,i}^{n+1}}{R_{k20}} \]

Man erhält die folgende Lösung:

\[\theta_{1,i+1} = \theta_{1,i} + \Delta t \left(\frac{(\theta_{1,i} - \theta_{2,i})^{n+1}}{R_{ki0}} \right) \]

\[\theta_{2,i+1} = \theta_{2,i} + \Delta t \left(\frac{(\theta_{1,i} - \theta_{2,i})^{n+1}}{R_{k20}} - \frac{\theta_{2,i}^{n+1}}{R_{k20}} \right) \]

mit den Anfangsbedingungen: \(q_1 (t = 0) \) ist gleich \((J_{hp} \cdot J_p) \) zum Abschaltungszeitpunkt des Kurzschlusses und \(q_2 (t = 0) \) ist gleich \(q_{Öl-unt} \) zum Fehlereintrittszeitpunkt.

3. Berechnung der Alterung

\[V = \frac{\text{Alterungsraten bei } \theta_{hp}}{\text{Alterungsraten bei } \theta_{hpref}} = 2 \frac{(\theta_{hp} - \theta_{hpref})}{B} \]

Das Montsingergesetz besagt, dass sich die Alterungsraten bei einer Temperaturerhöhung um \(y \) (K) verdoppelt. Aus der
4. Beispiel

An Hand eines Beispiels soll der Einfluss eines Kurzschlusses auf den Lebensdauerverbrauch veranschaulicht werden.

Die Nenndaten des betrachteten dreiphasigen Transformators sind:

\[S_n = 340 \text{ MVA}, \quad U_{1n} / U_{2n} = 405/18 \text{kV} \]
\[\eta_k = 6.67 \%, \quad P_{Fe,n} = 318 \text{kW}, \quad P_{Cu,n} = 780 \text{kW} \]
Eisen- und Kesselmasse: \(m_{Fe} = 129770 \text{ kg} \)
Kupfermasse US-Wicklung: \(m_{Cu,US} = 12877 \text{ kg} \)
Kupfermasse OS-Wicklung: \(m_{Cu,OS} = 18996 \text{ kg} \)
Masse des Öls: \(70000 \text{ kg} \)
Kühlungart: OF

Als Beispiel soll dreiphasiger Kurzschluss direkt an den Klemmen des Transformators (Kurzschlussstrom > 14 \(I_n \)) betrachtet werden. Vor dem Fehlereintritt sei der Transformator mit einem Lastfaktor von \(K = 1.2 \) betrieben worden. Die Kurzschlussdauer betrage 5 s.

Mittels der Gleichungen (6) und (7) werden die thermischen Widerstände des Ersatzschaltbildes berechnet. Die Parameter \(R_{Rh,0}, R_{Rh,20}, n_1 \) und \(n_2 \) werden aus Messungen ermittelt. Für diese Analyse ist es ausreichend, wenn die thermischen Widerstände mittels Gleichung (8) und Gleichung (9) und die Parameter \(n_1 \) und \(n_2 \) aus den Gleichungen (10) und (11) berechnet werden.

Das Bild 4 zeigt die zeitlichen Verläufe der Wicklungs- und Öltemperatur während des Kurzschlusses, und die Bilder 5 und 6 nach der Fehlerabschaltung.

In Bild 7 ist der Quotient aus der Kühlleistung und der Kurzschlussleistung dargestellt. Die Ergebnisse bestätigen die Annahme, dass während der Fehlerphase die vom Kurzschlussstrom umgesetzte Wärmemenge in der Wicklung gespeichert wird und damit die Öltemperatur konstant bleibt. Die Kühlleistung wird durch folgende Gleichung berechnet:

\[
P_{Kühlung} = \frac{1}{R_{Rh_{10}}} (\theta_1 - \theta_2)^{n+1}
\]

(27)

Die Kurzschlussleistung ergibt sich aus:

\[
P_{Ks} = \left(\frac{I}{I_n} \right)^2 P_{Cu,n} \left(1 + \alpha_{Cu} (\theta_{Cu-Mitte} - 20) \right)
\]

(28)

Das Verhältnis der Kühlleistung zu Kurzschlussleistung in der Kurzschlussphase.
Einfluss der Kurzschlussdauer auf die Alterung eines Transformators

<table>
<thead>
<tr>
<th>Konstante</th>
<th>α_{k}</th>
<th>β_{k}</th>
<th>γ_{k}</th>
<th>ϕ_{k}</th>
<th>ψ_{k}</th>
<th>ϕ_{f}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
<td>1 / 255</td>
<td>56</td>
<td>8.9</td>
<td>400</td>
<td>447</td>
<td>2746</td>
</tr>
<tr>
<td>Einheit</td>
<td>1 °C</td>
<td>(S m) / mm²</td>
<td>kg / dm³</td>
<td>J / (kg K)</td>
<td>J / (kg K)</td>
<td>J / (kg K)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>α_{k}</th>
<th>β_{k}</th>
<th>γ_{k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>46.7120</td>
<td>41.7384</td>
<td>99.6475</td>
</tr>
<tr>
<td>0.6</td>
<td>54.7992</td>
<td>48.1410</td>
<td>108.9594</td>
</tr>
<tr>
<td>0.7</td>
<td>63.9988</td>
<td>55.4782</td>
<td>119.5625</td>
</tr>
<tr>
<td>0.8</td>
<td>74.2810</td>
<td>63.7309</td>
<td>131.4234</td>
</tr>
<tr>
<td>0.9</td>
<td>85.6215</td>
<td>72.8835</td>
<td>144.5146</td>
</tr>
<tr>
<td>1.0</td>
<td>96</td>
<td>82.9231</td>
<td>158.8135</td>
</tr>
<tr>
<td>1.1</td>
<td>111.3990</td>
<td>93.8383</td>
<td>174.3004</td>
</tr>
<tr>
<td>1.2</td>
<td>125.8034</td>
<td>105.6196</td>
<td>190.5854</td>
</tr>
<tr>
<td>1.3</td>
<td>141.1999</td>
<td>118.2584</td>
<td>208.7225</td>
</tr>
</tbody>
</table>

In Tabelle 2 ist der Lebensdauerverbrauch in Abhängigkeit des Lastfaktors aus der Vorfelderphase ermittelt. Tabelle 3 zeigt die Abhängigkeit des Lebensdauerverbrauchs von der Kurzschlussdauer bei einer Vorbelaustung von $k = 1.2$.

Diskussion

Die Berechnungen am Beispiel eines realen 340 MVA Transformators haben ergeben, dass die thermische Alterung eines Transformators infolge eines Kurzschlusses nicht bedeutend ist. Selbst bei einer Vorbelaustung mit 1.2 p.u. (Lastfaktor $K = 1.2$) und einer angenommenen Kurzschlussdauer von 5 s liegt die Heißpunkttemperatur bei 191 °C Dies entspricht einem Lebensdauer- verbrauch von 21.20 Tagen.

Da die maximalen Fehlerabschaltzeiten normalerweise jedoch weit unter 5 s liegen (in Mittelspannungsnetzen beträgt die übliche maximale Fehlerabschaltzeit etwa 1 s, in 110-kV-Netzen ist ein Fehler nach circa 200 ms abgeschaltet und in Hochspannungsnetzen beträgt die Abschaltzeit sogar nur 150 ms [7]) kann aus thermischer Sicht der Einfluss des Kurzschlussstroms auf eine vorzeitige Alterung der Papierisolierung vernachlässigt werden.

Literatur

tz, H. 23, S.739, 1931.

ELEKTRIE, Berlin 57 (2003) 01-04