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Abstract--The increasing competition in the liberalized energy

market requires from the utilities, power generation and
transmission companies possessing substantial physical assets to
optimize their business processes in enhanced manner. Cost, time,
quality, risk and flexibility are parameters subject to
optimization. This implies, that all processes especially those
belonging direct to the core activities should be surveyed with
regard to reduction or improvement of the above-mentioned
strategic parameters. Based on physical measured data the
described approach focuses on the early detection of failure
escalation and recognizing trends in equipment condition before
the fault consequences occur in the financial statements. Using
this feature in a process oriented controlling environment, the
Asset Management System (AMS) turns out as a powerful
support by setting up the maintenance strategy and by taking
decisions on different levels of organization. It supports to
optimize cross functional business processes and consequently
helps the company to exploit to the full the unrestricted
competition on the energy market which has arisen with the
liberalization.

    Index Terms—Management decision-making, Power distribu-
tion reliability, Power system monitoring, Risk analysis, Power
transmission  maintenance, Strategic planing

I.  INTRODUCTION

HE Asset Management is becoming a vital business
discipline in electric utilities because its capital in

physical assets constitutes the substantial part of total assets.
With highly developed information technologies the efficient
exploitation of asset data processing can provide additional
competitive advantages on the energy market. In the
mentioned companies the asset pool mainly consists of
electromechanical equipments being continually exposed to
value reduction due to condition deterioration. The immense
amount of value depreciation, the stochastic manner of various
aging phenomena and the shortage on information quality
about the actual equipment’s condition in traditional plant
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book keeping explain the strategic importance assigned to this
paradigm. The paper will show a conceptual architecture of an
AMS integrating standalone Online Monitoring Units (OMU)
of primary electrical equipments and a central Diagnostic Unit
(DU). The system architecture and one of the decision
supporting methods depicted in Fig. 5 give a quick insight into
this reliability centered approach focused on practical use. The
paper gives also a short review about the Target Costing
Methodology that has been used as theoretical fundamental for
continuous risk assessment of eventual breakdown events. The
authors are dealing with the following questions: How to form
a single indicator which gives a reliable estimation and a good
visualization of changing risk? What structure of system
hierarchy should be chosen to be in conformance with
organizational and process requirements? How to give priority
to maintenance works in the case of  limited budget?

II.  ROLL CONCEPT  OF THE AMS
Depending on the asset nature (financial, physical, human

etc.) there are a lot of definition of this management approach,
but the main concept is the same. For physical assets the most
appropriate definition could be the following: "Systematically
employment of decision situation oriented methods (software
applications) incorporating the relevant set of related pro-
cesses, performance measures and calculation procedures in
order to optimize conflicting process objectives for the whole
business life" (see also in [1, 2, 3]). An overview of the
competing strategic goals and the main features of AMS are
illustrated in Fig. 1.
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To achieve the best compromise, called optimum, the
consideration of the interplay between existing business
processes and their multidiscipline perception (technical,
economical, environmental etc.) is of grate importance. Proper
interpretation and time varying weighting of conflicting key
factors stemming from different kind of relevant processes is a
basic requirement to asset managers. They should be able to
set up scenarios of anticipated decision situations in advance,
to select the most important related process data for them and
through an appropriate algorithm to calculate a few key
indicators facilitating the decision making. Placing those
indices at executive’s disposal timely is crucial important in
order to avoid risk escalation with high gradient (see Fig. 2)
and to reduce the complexity of breakdown scenarios.
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Fig. 2. Progression of breakdown risk against system reliability

While setting down the complexity, the transparency in the
underlying procedures should be kept on high level what offers
the decision makers a solid communication fundament. A par-
ticular emphasis has to be put on providing of data like

      1.  component oriented cost allocation
      2.  historical operating circumstances in time sequence
      3.  process -and system component layout
      4.  procurement and repair time of components

Equipment oriented knowledge representation and improved
visualization throughout the process hierarchy are highly re-
commended elements of AMS and are to be considered in
software design.

Static techniques like book keeping are tracking down the
condition deterioration of plants in the form of predefined
discount rate. This usually results in significant discrepancy
with regard to the actual plant state having considerable impact
on the quality of  financial decisions. It is also the aim of the
AMS to provide an integrated system for more precise
depreciation assessment based on current condition data.

In order to emphasize the information managing role of
AMS acting as an information interface to functional and cross
functional processes, (like budgeting, maintenance, procu-
rement, stock keeping etc.) the organizational and process
aspect [2, 3] of this comprehensive paradigm are illustrated on
the bottom of Fig. 5 (see also Fig. 1).

To benefit economically from data gathered with an
increasingly number of online monitoring systems and offline
tests, the developed algorithm (besides the traditionally alarm
function) supports an early warning function as well. This is
able to detect, quantify and track down the risk at the very

incipient stage of fault escalation. In case of small condition
deviation from failure free state on many equipments at the
same time, just their appropriate aggregation on the highest
hierarchy level can make it possible to highlight the often
locally wide distributed, latent rising risk jeopardizing the
system function as a whole. The real time risk assessment
feature of the AMS assists to carry out a "What If Analysis"
continually on the selected process level which can spread
over the whole supply chain [3]. The asset hierarchy used in
AMS has to serve as a failure map as well as, what enables
users to ask for: 1. geographical and functional fault location
2. current and expected risk distribution among the monitored
system components. This kind of visualization provides
decision makers with timely access to all required information
in a demand oriented structure.

III.   THE THEORETICAL BACKGROUND OF MODEL BUILDING

Target Costing Methodology (TCM) is a technique of de-
termining the Allowable Product Cost (APC) and then de-
signing and producing the product to meet this cost. This
allowable cost is the one that provides the expected pro-
fitability, given the predicted volume, selling price and func-
tionality of the product.  The procedure of the target cost defi-
nition involves the following main phases:

1. Calculation of target cost of the product (see APC)
2. Selection of  the for customer relevant product’s functions

and weighting them (Fj)
3. Definition of function contribution’s share of ith compo-

nents supporting the related product function Fj (FCji).
4. Allocation of APC among components on the basis of

their Total Function’s Contribution to all related Fj (FCiT)

The APC calculated from expected market price will be
allocated among product components through their FCiT as
shown in Fig. 3. The Allowable Component Cost for ith

component (ACCi)  can be defined according to (1).

ACCii = FC iT ⋅ APC  where �  FC iT  =�
=

n

j 1
(Fij ⋅ Fj)         (1)

The practical reasoning to this design technique might be
summarized as the following sequence of thoughts: how much
the total function contribution share of the ith component so
much its relative use, the more its use the more the ACCi for
it. For more details refer to Fig. 3, Fig. 4 and [4].

As a result of an iterative design procedure of TCM, the
direct proportionality between the cost of a product component
and its total function contribution to product functionality
(correlating direct with customer satisfaction) can be taken as
given. Supposed that the selected function’s preference
distribution (F1,.Fj,.Fn) is time invariant and the causal
relationship between a set of measurement data about
component’s condition versus its monetary depreciation with
Fuzzy Logic (FL) is describable, the current performance
capacity of  the product  (regarded  now as an overall
condition indicator) can be calculated on uniform monetary
value basis.
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In case of  condition evaluation of operating physical assets
in an electrical substation, the algorithm of thinking should be
reverse to the above cited one in design phase, namely, the
more the depreciation of components the less their function’s
contribution. As a result the overall condition of the equipment
and its expected use for the substation functionality declines
due to its anticipated breakdown.

 Beyond doubt the product reliability as relative index can
be estimated through the ratio of function’s contribution (FCt)
to the respective contribution magnitude in health case (FC0),
hence  the current reliability  can be  assessed  with  the same
indicator as the condition state. Furthermore it should be noted

IV.  BUILDING THE ASSET HIERARCHY AND OUTLINING OF
EQUIPMENT’S COMPONENTS

Regarding a substation as a "product" (designed with TCM)
then its hierarchic decomposition can be implemented by the
analogy with the procedure used in the Target Costing
Methodology (see the right side of Fig. 3). Different system
functions contributing to substation reliability are represented
through Groups of Equipment’s (GE) consisting of electrical
equipment’s (e.g. transformers etc.) with identical function.
Furthermore, GE-s are subdivided into single Equipment’s
(EQ) and the latter into their parts corresponding to the tree
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Fig. 3. Manufacturing cost calculation model for product components using their function’s contribution
share in the supported function as a target cost distribution factor

here that there is mostly a remarkable time difference between
the start point of FC fall (reliability) and the subsequent
function breakdown (actual use = 0). This time period of
failure impact’s delay is at executive’s disposal to make the
right decision in order to prevent a catastrophic failure
escalation and adjust the relevant business processes (load
transfers between feeders, maintenance or replacement etc.)
to the new optimization criteria  (see Fig. 2).

structure (see Fig. 4 and Fig. 5). Theoretically it is possible
that one component would contribute to two or more
components placed in Higher Hierarchy Level (HHL). This
would lead to netlike structure depicted in Fig. 3. In order to
keep the FC aggregation’s algorithm as simple as possible,
(secured through tree structure), the theoretical case above is
not taken into consideration in the structure building. If the
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Fig. 4. Condition assessment on monetary value basis using Open Loop Fuzzy Logic for expert knowledge integration
and  component’s depreciation evaluation
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simplification is not acceptable the necessary correction should
be carried out by adding supplementary rules in the Open
Loop Fuzzy Control (OLFC).

OLFC is acting upon the model as FC distributor and it
secures the proper transformation of monitored "health" data
deviation into depreciation expressed through defuzzification
of acting fuzzy rules as shown in Fig. 4. More about the pro-
cessing of expert knowledge using fuzzy logic in [5].

The depth of decomposition and the accuracy of component
definition have a significant influence on the information’s

quality provided by the AMS. This means, that those
components should be selected for condition monitoring,
which tend to fail mostly and whose FC reveals a considerable
role in the fulfillment of respective component’s function(s) in
HHL. The approximately relationship between measurement
data chosen for condition monitoring and the corresponding
component’s depreciation (in turn FC reduction) can be set up
through using membership functions reflecting former
experience, failure statistic, recommendations in standards,
expert and supplier knowledge [5].
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V.  SETTING MAINTENANCE PRIORITIES
BY LIMITED BUDGET

The equipment’s condition and the importance of its
function from system’s reliability viewpoint are regarded as
the major parameters for setting the maintenance priorities. In
addition to the condition deterioration "c", serving as
condition estimator, also the importance indicator "i" will be
calculated on monetary value basis. The linear combination of
both "c" and "i" results in the risk estimator quantified through
the respective vector distance for EQg h  (d1 , d2 ....dn) as shown
in Fig. 5. The higher the actual risk the higher priority should
be assigned to the respective equipment in maintenance
schedule, in order to eliminate the most dangerous risk po-
tential at first. Whether the prevailing risk should be reduced
or not is up to the decision maker setting the threshold for it.

Quantifying the importance indicator is a significant task of
model customization. In general this indicator has a time
varying character. Its value can change from one plan period to
another and depends on a lot of variables like the net topology
[6], load dispatch [7], disposal of reserve, weather conditions
etc. Since the extend of this paper doesn’t allow to consider all
variables having impact on the equipment’s importance, the
most frequent case will be demonstrated below. That means
that the EQ’s load, assumed to be continuous, corresponding
with the nominal design parameters and the energy supply
won’t be interrupted in case of repair but will be provided
through switch over to another source. It is the most realistic
situation according to the well known n-1 principle.

In the described example the importance ranking among
EQ-s has been carried out on the basis of the relevant FC0’s
(computed on purchase’s price basis) for EQ’s level (see Fig.
5, importance "i"). The applied logic "the more use the higher
importance" underlying the importance’s indicator calculation
follows the principle in TCM described in section 3. The
approach above provides a satisfying but not exact result by
setting priorities for maintenance scheduling in general
situation. The reason for the inaccuracy is the unchanged
calculation basis for FC0’s, (had been used as initial state’s
parameters for condition assessment as well as, see section 4.)
while the assessment’s objective has been changed from
functionality (the capacity to work) to availability. But on
what basis can the more precise FC0 for "i" be computed and
in which situations do we have to consider it necessary? In
order to answer the question above one should apply the TCM
again. The cost of the function represented through the
respective EQ consists of the procurement’s and Installation’s
Cost (IC) making up together the Investment for the EQ (IEQ).
The most significant cost driver for IC is the time having
crucial impact on availability and therefore on loss in revenue
due to possible power supply break down. The more IC (it is
proportional to the restoration time) the less the availability
and this increases the importance of the respective EQ.
Consequently, for FC0 definition of EQ’s from availability
point of view, (versus functionality by condition assessment)
not just the purchase price, (characterizing the contribution to

the functionality) but the entire investment’s cost should be
regarded as relevant. Its share in total investment of the
corresponding group of equipments will show the relative
importance of it in comparison to another EQ-s. Taking into
consideration the mentioned correction is especially important
if equivalent EQ-s on different places with profound dissimilar
circumstances (geographical, climate, tariffs etc.) are subject
to the prioritizing. Through proper mathematical manipulation
of the basis for "i" all significant constraints (derived from the
current decision situation) can be embedded in this indicator
that enhances the applicability of the basic structure presented
in Fig 5 and chapter 6.

VI.  ALGORITHM OF CONDITION EVALUATION

According to substation’s hierarchy pointed out in section 4
the asset is decomposed and classified on 5 levels as follows:
substation (ST), group of equipment (GE), equipment (EQ),
parts of equipment (PE) and elements of part (EP). The
interconnection between them has been described in matrix
form, which indicates the aggregation’s network of function's
contributions in the selected asset portfolio:

ST  h   =[GE1, GE2,..., GEg,..., GEk] (2)
GEg   =[EQg1, EQg2,..., EQgh,..., EQgl] (3)
EQgh =[PEgh1, PEgh2,..., PEghi,..., PEghm] (4)
PEghi =[EPghi1, EPghi2,..., EPghij,..., EPghmn] (5)

where: k, l, m and n are the maximum number of system
components belonging to one node of higher hierarchic level
in the tree structure.

The prices of components on the lowest hierarchy level are
the initial input parameters (s. Fig. 6). Their aggregation can
be carried out using the algorithm on Fig. 7. The FC0’s (which
are equal to the respective price share) are depicted in Fig. 8.

The fact that the sum of FC’s of selected components in
every node of the "network" is taken for 100% in failure free
state results in a simple procedure calculating the matrices for
FC0, FCt and "c" respectively. They are shown in Fig. 8 to
Fig. 10. For the equations underlying the computation of
related matrix’s elements see Fig  5.
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On Fig. 9 and Fig. 10 those components are marked with
grey which have been degraded due to failure detected by
monitoring system.

The visualization of  the indicators is the final and very
important stage of the evaluation because the interpretation
depends on it to a large degree. To use the polar coordinate
system for this reason is advisable. Fig. 11 shows the trend of
condition deterioration of EQ22 where the current state
reveals the warning status. The current depreciation of the
equipment makes up about 11 529 $ in December.

The analysis of  possible interplay effects between EQ-s
charged with failure is beyond the scope of this paper, but it
has to be mentioned to keep the phenomena in perspective and
remind the asset manager of including it as a third dimension
for risk estimation calculation (see Fig. 5 and section 5). It
means to assess the expected depreciation increment of EQgh

due to impact of malfunction of other EQ-s.
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       Fig. 7. Basic algorithm underlying to price data aggregation
                             throughout the hierarchy
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VII.  DEVELOPING FUZZY RULES

The example in Fig. 12 demonstrates the OLFC for trans-
formation of insulation’s oil test data into value Depreciation
(D). The expected Maintenance Budget (MBiE)  on PE- level
can be calculated through Probability (Pghij) of related compo-
nent’s breakdown and its Total Repair or replacement Cost
(RCjT) according to (6). The exact functional relation between
D and Pghij is not known. However, it might be assumed that
the direct positive correlation (D=Pghij) describes the men-
tioned relationship with acceptable accuracy in warning status.
The hypothesis above, which is always subject to individual
component-oriented fine tuning has been applied in (6) below.

MBiE = �
=

n

j 1
jERC         where �       RCjE = Pghij ⋅ RCjT          (6)

Fig. 12. Fuzzy Logic based interpretation of condition data demonstrating the
"bridge" function  of AMS between physical and financial asset

VIII.  CONCLUSION

 The proposed asset management model incorporates all
relevant aspects of dynamic management with special regard
to continuous risk assessment. It takes into account the
prevailing expert knowledge in a systematic way. Despite the
inaccuracy of single assessments, the results obtained with this
approach renders reliable information about the current asset’s
condition. Using the suggested asset hierarchy the  acceptable
information credibility can be attained due to cause-impact
based aggregation of numerous online and offline parameters
having impact on the equipment’s condition.

The strong points of the concept are that the overall
substation condition can be characterized with a single
indicator and that through using an importance index for all
equipments the current hazard risk from system point of view
is always in focus by decision making. Further advantage of
this comprehensive approach is that the functional and logical
dependencies manifested in the hierarchy and fuzzy rules
provide a high transparency all over the asset data and so a
solid communication fundament within the entire organization.
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