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Abstract
According to the standards, emission measurements are
carried out in the frequency domain using a test receiver.
In this paper the setup and algorithms of a measuring sys-
tem in the time domain is presented. The advantage of this
system is, that measurements can be done approximately 10
to 100 times faster. The emphasis in this paper is set on
algorithms to increase the measurement accuracy of nar-
rowband and broadband signals. Furthermore, the choice
of the best capture time for the time domain measurement is
described.
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INTRODUCTION
Emission measurements for the EMC check of a device
must be carried out (according to the standard [3]) in the
frequency domain with e.g. a test receiver. It is necessary to
execute a frequency sweep and to measure the emission at
each frequency. This method has the disadvantage that the
measurement lasts, depending on the selection of the pa-
rameters, for a quite a long time (typically 10 to 30 min).
Since a long measurement always implies high costs, it is
profitable to look up for possibilities to shorten the meas-
urements without a loss of quality.
In particular, the measurement in the time domain provides
a good possibility to save time.  Instead of measuring in the
frequency domain with a test receiver, several single shots
are recorded with an oscilloscope. From these data a com-
parable spectrum can be calculated by using the Discrete
Fourier Transform (DFT) and several correction algo-
rithms. In this paper the time domain measuring system
FEMIT (Fast Emission Measurement In Time Domain) is
described.

MEASUREMENT SETUP
When measuring in the frequency domain, the signal is di-
rectly recorded with the test receiver, which executes a fre-
quency sweep. This measuring setup in comparison to
FEMIT is shown in Fig. 1.
The central device for FEMIT is a digital oscilloscope. De-
pending on the level of the signal, it is often necessary to
use a preamplifier if the lowest measuring range of the os-
cilloscope is not sensitive enough. To make sure, that the
sampling theorem is kept, an appropriate anti-aliasing low-
pass should be connected in series to the oscilloscope.
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Figure 1. Measurement setup

BASIC ALGORITHM OF EVALUATION
The basic FEMIT algorithm consists of a DFT, a smoothing
and a correction algorithm. The correction takes all fre-
quency characteristics (antenna factor, lowpass, etc.) into
account, so that narrowband signals are measured correctly.
This basic algorithm was already described in detail [1].

Time consumption and limits
The time consumption of one FEMIT measurement is, de-
pending on the parameters, 10 – 100 times lower than the
one of a test receiver measurement. The (in comparison to
the test receiver lower) dynamic range of FEMIT is limited
by the quantization of the oscilloscope. The theoretical
maximum is approximately 50 dB (8 bit), a typical value is
approximately 40 dB. However, this is no restriction for
EMC measurements, because here mainly the levels around
the limit line are interesting. The effect of a lower dynamic
range is only a higher noise level.

Typical applications
Typical applications for FEMIT are quick previews, re-
peated emission checks and the measurement of short or
rare phenomena (e.g. switching impulse, flashover). The
height scan and the check of the direction of highest emis-
sion can be performed fast. Furthermore, the emission of
different modes of operation of a device can be measured
seperately.

NARROWBAND SIGNALS
The so far described basic algorithm shows correct results,
when the frequency of a narrowband signal corresponds to a
DFT frequency step and a measurement frequency of the
test receiver. Here, the test receiver and FEMIT show the
same results.
If a narrowband peak is located between two DFT steps the
peak widens itself and the peak level is attenuated. This
DFT effect is called the “scallop loss”. The test receiver
shows a similar effect. When the frequency of a narrowband



signal does not fit exactly on a measurement frequency
(center of the bandpass), the peak is also attenuated ac-
cording to the characteristic of the transfer function of the
bandpass.
In this chapter, these effects are examined and an algorithm
is presented to improve the accuracy of the FEMIT meas-
urement.

Parameters of the DFT
The result of the DFT depends mainly on two parameters:
the sampling frequency fS and the capture time T.

Sampling frequency
According to the sampling theorem the required sampling
frequency equals twice the wanted maximum frequency
(Nyquist frequency) of the calculated spectrum. To avoid
aliasing errors it is recommended to set the sampling fre-
quency 2 to 4 times higher.

Choice of  capture time T (part 1)
The capture time T (duration of the time domain record of
the oscilloscope) and the frequency resolution ∆fDFT (dis-
tance between two frequencies in the spectrum) are given as

DFT

1
∆f

T = (1)

To compare the test receiver spectrum and the FEMIT
spectrum, the frequency resolution should be similar:

recvDFT ∆f∆f ≈ (2)

where ∆frecv is the distance between two measurement fre-
quencies of the test receiver (step size). A much shorter
time T is not allowed, because then the frequency steps in-
crease in comparison to the test receiver and so the resolu-
tion decreases. A longer time implies (needless) higher
computing time.

Approx. of the test receiver's transfer function
The transfer function of the bandpass of the test receiver
can be approximated well by a Gaussian curve as shown in
Figure 2.
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Figure 2. Transfer function of the test receiver and
fitted Gaussian curve (120 kHz bandpass)

Therefore, in the following discussion a Gaussian curve
with the same 6 dB-bandwidth B6 is used.

Window functions
Window functions can be used to reduce the scallop loss
and to affect the level of narrowband signals, that are lo-
cated between frequency steps. The recorded time domain
signal is multiplied by the window function before the DFT.
For the following discussion, it is necessary to understand
the effect of a window function. Even if no window func-
tion is explicit used, the window effect can be observed in
the spectrum. The reason therefore is that a recorded signal
of limited length can be regarded as an infinite signal mul-
tiplied by a rectangular window.
A sinusodial signal can be defined as

( ) ( ).0cos ϕ+= tωtu (3)
Multiplied by the window function w(t) the windowed
function v(t) is given as

( ) ( ) ( ).tutwtv ⋅= (4)
Using properties of the Fourier Transform and regarding
only the physical measurable part of the spectrum, the
spectrum V(ω) of the windowed function results to

( ) ( ) ,0ωωWωV −= (5)

where W(ω) is the spectrum of the window function itself
[4]. Obviously, the spectrum of a windowed cosine equals
the spectrum of the window function itself, shifted by the
frequency ω0.

Used window functions
In the algorithm, the rectangular and the Flat Top window is
used in the algorithm. Figure 3 shows these window func-
tions and (for comparison) the well-known Hamming win-
dow.
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Figure 3. Window functions
With the exception of the rectangular window, all window
functions attenuate the signal. In the frequency domain this
results in an attenuation of the whole spectrum. This at-
tenuation is called the coherent gain and has to be taken



into consideration. In the following graphs the coherent
gain is corrected.
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Figure 4. Spectra of window functions
Figure 4 shows the spectra of the mentioned window func-
tions. The difference between the spectrum of the rectan-
gular and the Flat Top window is obvious: the latter has a
lower scallop loss (flatter peak of the main lobe), a broader
main lobe and lower side lobes (not visible in Fig. 4).

Sampling effect
These spectrums of the window functions give the theoreti-
cally exact result, but the DFT samples the exact spectrum
at the discrete frequencies. The sampling effect can be ex-
plained by the example of the rectangular window.
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Figure 5. Spectrum of the rectangular window
Figure 5 shows the spectrum of a rectangular window. The
x-axis is normalized on ∆fDFT. If a narrowband signal is
located in the center of the main lobe, the surrounding fre-
quency points are located on the zeros of the spectrum ("o"
in Fig. 5). Therefore, the DFT result contains only the cor-
rect value.
On the contrary, the surrounding points of a narrowband
signal between two ∆fDFT meet the maxima of the side lobes
spectrum ("x" in Fig. 5) and result in a broadened spectrum
with a damped maximum value.

120 kHz bandpass (band C,D), ∆∆∆∆f DFT = 100 kHz
Figure 6 shows the spectrum of the rectangular window, the
normalized Gaussian curve of the bandpass and the nor-

malized limits (according to the standard [3]) by the exam-
ple of the 120 kHz bandpass and T=10µs=1/100 kHz. The
x-axis is normalized on the frequency resolution ∆f = 100
kHz.
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Figure 6. 120 kHz bandpass, limits (standard),
rectangular window spectrum

The figure shows, that a good agreement between the spec-
trum of the rectangular window and the selection curve of
the 120 kHz bandpass can be found. The only problem is
the widening of the peaks due to the high side lobes. How-
ever, this effect is hardly noticeable as it is only visible,
when a peak stands off the surrounding noise more than
about 15-20 dB.

Correct measurement of peaks
Fig 6 shows, that both the test receiver and FEMIT under-
estimate a peak, when a peak is not located on a measure-
ment frequency. In the worst case (peak between two meas-
urement frequencies), this unwanted attenuation amounts
e.g. for the 120 kHz bandpass to 3.9 dB (step size
∆frecv = 100 kHz) or  to 1 dB (∆frecv = 50 kHz). This chapter
describes an algorithm for FEMIT that allows a correct
measurement of peaks.
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Time
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⋅ Flat Top
window

+ coh.
gain

Figure 7. Algorithm for correction of peak-level
The perfect window spectrum has a rectangular shape with
0 dB in the range ± 0.5 ∆fDFT. The effect of this window is,
that a peak is plotted at the next DFT frequency without
attenuation and without widening due to side lobes. As it is
not possible to use the corresponding window function
si(x), the wanted effect has to be created by the combina-
tion of two windows.



Fig. 4 shows that the main lobe of the Flat Top spectrum is
extremely flat. The disadvantage of this window is, that
peaks are widened strongly (≈ 3 ∆fDFT). An algorithm that
uses the Flat Top window, but avoids the widening is pre-
sented in Fig. 7. First, the time domain signal is transformed
into the frequency domain directly (”using” the rectangular
window). Then, the signal is multiplied with the Flat Top
window. After the DFT the coherent gain is added. Now,
the peak levels of the peaks in the first spectrum are re-
placed by the corresponding levels of the second spectrum.
The result is that the peaks have the exact level but not the
extreme widening of the Flat Top spectrum. The important
point is, that these levels often give a better representation
of the real levels than the results of the test receiver!

BROADBAND SIGNALS
The so far presented algorithms produce correct results
when measuring narrowband signals like signals with dis-
crete frequency and pulses with a repetition frequency
higher than the bandwidth of the test receiver bandpass
(Fig. 8).
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Figure 8. Narrowband and broadband signals
However, broadband signals (typically pulses with lower
repetition frequency) are not measured correctly due to the
influence of the detector of the test receiver. Here, the
measured level depends non-linear on the repetition fre-
quency. When using the quasi-peak detector the basic algo-
rithm overestimates the signal up to 40 dB! Therefore, an
algorithm was developed in order to correct this effect [2].
The following subchapters explain some aspects of the
system theory of the test receiver that are necessary to un-
derstand the correction algorithm.

System theory of pulses
In the frequency domain, a pulse is represented by a line
spectrum. The envelope of the line spectrum depends only
on the shape of the pulse. The repetition frequency of the
pulse determines the distance between the lines in the spec-
trum.

Ideal bandpass and pulses
The response of a ideal rectangular bandpass to a pulse
depends on the repetiton frequency of the pulse. If the
repetition frequency f0 of the pulse is lower than the band-
width Br of the ideal rectangular bandpass, the pulses can
still be recognized in the response signal. In the frequency

domain, this means that more than one line is inside the
filter pass band. If f0 is higher than Br, the response signal of
the bandpass is a sinusoidal cw-signal. In the frequency
domain, this means that at most one line is located inside
the filter pass band.
Theoretically a (repeating) pulse is always a narrowband
signal. But due to the limited system bandwidth, for f0 < Br,
the measured spectrum is a broadband spectrum and for
f0 > Br a narrowband spectrum.
Therefore, the boundary between broadband and narrow-
band spectrum is f0 = Br.

Equivalent bandwidth
In reality, the bandpass of the test receiver is not ideal. It
can be described by a bell-shaped (gaussian) curve (see Fig.
2). To describe the relation between these bandpasses, the
equivalent bandwidth has to be determined. Two conditions
have to be met: for narrowband signals the maximum of the
transfer characteristic has to be equal.  For broadband sig-
nals, the impulse bandwidth has to equal, that is, the enve-
lopes of the pulse responses must have the same maximum.
By comparing the fourier transforms of the responses, the
following relation between the bandwidth Br of the ideal
bandpass and the 6 dB bandwidth B6 of the gaussian curve
can be obtained:

06.1
2ln
π

2
1,

2ln
π

2
1

6r ≈= BB (6)

In the standard [3], a factor of 1.05 is given.

Pulse response curve of the test receiver
The pulse response characteristic shows the attenuation as a
function of the repetition frequency. These characteristics
depend on the bandwidth and the detector. For frequencies
lower than the bandwidth, the characteristics are listed in
the standard [3]. For higher frequencies, the response is a
sinusoidal signal, that is, we have linearity.
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Figure 9. Pulse response curve of the test receiver
(B6 = 120 kHz, peak, quasi-peak and average detector)

Therefore, the characteristic rises with a gradient of
20 dB/dek. The knee of the curve is located at the transition



form broadband to narrowband spectrum, at the frequency
f = Br = 1.06 B6 (=127 kHz for 120 kHz bandpass).

Pulse response curve of FEMIT
In the time domain, only a finite capture time T can be re-
corded. When measuring pulses with a period T0 < T, sev-
eral pulses are located within the recorded window
(Fig. 10). In the frequency domain, this corresponds to a
narrowband line spectrum.  Therefore, for f > f0 = 1/T0 the
characteristic rises again with a gradient of 20 dB/dek (line-
arity).

Trigger: t=0 t =T

T0 = T

T0 < T

T0 > T

Figure 10. Pulses and capture time
On the contrary, for pulses with T0 > T only one pulse (the
trigger event) can be found in the window. In the frequency
domain this results in a broadband spectrum, that is inde-
pendent of the repetition frequency. Therefore, the pulse
characteristic is a constant line. The knee is located at the
repetition frequency f = f0 = 1/T0.  Fig. 11 shows the result-
ing characteristic for several capture times. Comparing Fig.
9 and 11 shows, that FEMIT (or the DFT generally) has the
same principal pulse response curve as the peak detector of
the test receiver.
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Figure 11. Pulse response curve of FEMIT

Comparision of pulse response curves and cor-
rection
To compare the characteristics of the test receiver and
FEMIT, a relationship has to be found. The common part is
the 20 dB/dek rise. At these frequencies, both the test re-
ceiver and FEMIT produce a line spectrum. In the time

domain, these are sinusoidal, narrowband signals. As these
signals are measured correctly with both systems, the char-
acteristics have to be shifted vertically over each other, so
that the 20 dB/dek part is equal.
For the correction of the spectrum a correction curve is
defined as the difference between the test receiver and the
FEMIT puls response curve.
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Figure 12. Correction for 120 kHz bandpass,
 quasi-peak detector. Parameter: capture time T

This curve depends on the bandwidth and the detector of
the test receiver as well as on the capture time. Fig. 12
shows correction curves for the quasi-peak detector and the
120 kHz bandpass for parameterized capture time T.

Choice of  capture time T (part 2)
Fig. 12 shows, that the shape of the correction curve de-
pends on the capture time T. Generally, for every T the
spectrum can be corrected. But it is better to choose a cor-
rection characteristic as close to 0 dB as possible. Here, the
error is minimal, when a correction is not possible (e.g.
superposition of several different pulses). Therefore, the
optimal value for ∆fDFT regarding the correction of
broadband signals is the equivalent impulse bandwidth of a
rectangular bandpass (curve for T = 7.9 µs in Fig. 12):

6optDFT, 06.1 B∆f = (7)

Table 1 shows the resulting values by the example of
band B (9 kHz) and band C,D (120 kHz).
It is obvious that the theoretical best ∆fDFT is not a useful
value. An adequate choice for ∆fDFT and T is listed in Ta-
ble 1.

Table 1. Capture time T
Band B6 ∆fDFT,opt =

1.06 B6

Chosen
∆fDFT

Τ = 1/∆fDFT

B 9 kHz 9.54 kHz 10 kHz 100 µs
C, D 120 kHz 127 kHz 100 kHz 10 µs



Measuring algorithm for broadband signals
Fig. 13 shows the block diagram of the algorithm and
Fig. 14 shows an example. First, the trigger of the oscillo-
scope is set to a relatively high level in order to record a
pulse. The spectrum is calculated by applying the basic
algorithm (“Trigger max” in Fig. 14) and is corrected for all
frequencies according to the correction value given by the
correction curve at the repetition frequency of the
broadband phenomenon (“-24dB”, “corr” in Fig. 14).

Basic algorithm

Trigger max �
impulse

Attenuation according
to correction (Fig. 12)

Corrected spectrum

Replace peaks

Trigger 0 �
narrowband part

Basic algorithm

Find peaks

Figure 13. Measuring algorithm for broadband signals
The broadband part of the spectrum is correct now. Only
the narrowband peaks are faulty. First, because the level of
the peaks must not be attenuated and second, because peaks
below the broadband spectrum are not measured at all (e.g.
at 95 MHz in Fig. 14). Therefore, a second measurement is
recorded without a pulse (trigger level 0).  The corre-
sponding spectrum (“Trigger 0” in Fig. 14) contains all the
narrowband peaks with the correct level. In a last step the
peak levels of the first (broadband) spectrum are replaced
by the peak levels of the latter spectrum.
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Figure 14. Example for broadband correction

Limits and error
The described algorithm can only be applied if the repeti-
tion frequency of the pulse is known and if one pulse domi-
nates the spectrum. The typical difference between the test

receiver and FEMIT spectrum at the broadband parts is in
the range 0 to 3 dB.

Example
Figure 15 shows a comparison of the spectra of the test
receiver and FEMIT.
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Figure 15. Comparison test receiver - FEMIT
The test signal consisted of a 100 Hz pulse and a quartz
oscillator. Both narrowband and broadband parts of the
spectrum show good agreement of the FEMIT and the test
receiver spectrum.

CONCLUSIONS
The time domain measurement system FEMIT executes
emission measurements approximately 10 - 100 times faster
than a test receiver. The correct choice of the capture time
and algorithms to correct the peaks of narrowband and
broadband signals were presented. Often, the result of
FEMIT is more correct than the one of the test receiver due
to the bandpass characteristic.
FEMIT is an adequate measuring system especially for
quick previews, repeated checks of the emission of an EUT
and short phenomena.
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