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Abstract

At present, for economic reasons, there is an increasing emphasis on
keeping transformers in service for longer than in the past. A condition-
based maintenance using an online monitoring and diagnostic system is
one option to ensure reliability of the transformer operation. The key
parameters for effectively monitoring equipment can be selected by
failure statistics and estimated failure consequences. In this work, two
key aspects of transformer condition monitoring are addressed in depth:
thermal behaviour and behaviour of on-load tap changers.

In the first part of the work, transformer thermal behaviour is studied,
focussing on top-oil temperatures. Through online comparison of a
measured value of the top-oil temperature and its calculated value, some
rapidly developing failures in power transformers such as malfunction of
the cooling unit may be detected.

Predictions of top-oil temperature can be obtained by means of a
mathematical model. Long-term investigations on some dynamic top-oil
temperature models are presented for three different types of
transformer units. The last-state top-oil temperature, load current,
ambient temperature and the operating state of pumps and fans are
applied as inputs of the top-oil temperature models. In the fundamental
physical models presented, some constant parameters are required and
can be estimated using a least-squares optimization technique. Multilayer
Feed-forward and Recurrent neural network models are also proposed
and investigated. The neural network models are trained with three
different Backpropagation training algorithms: Levenberg-Marquardt,
Scaled Conjugate Gradient and Automated Bayesian Regularization.

The effect of varying operating conditions of the cooling units and the
non-steady-state behaviour of loading conditions, as well as ambient
temperature are noted. Results show a sophisticated temperature
prediction is possible using the neural network models that is generally
more accurate than with the physical models. The results are sufficient to
justify applying the neural network model in the online monitoring
system.
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In the second part of this work, an acoustic measuring system for online
condition monitoring of the tap changer operation is developed.
Transformers with on-load tap-changer (OLTC) are important elements
in modern power systems since they allow voltage to be maintained
under load changes. Being a mechanical device that undergoes repeated
operation, OLTCs have a high failure rate compared to other electricity
distribution equipment. Failures of an OLTC may cause damage to other
parts of the complete transformer unit. During the operation of an OLTC
a series of mechanical and electrical events produce distinctive vibration
and noise patterns. In principle, an analysis of these typical vibration
signatures should reveal different aspects and phases of tap changer
operation. The transition time interval during the tap change is expected
to be constant as long as no fault appears.

In this work, the sequences of movable main contacts and transition
contacts in the diverter switch during the transition phase are studied.
Vibration signals through the tap change process are detected by a
piezoelectric sensor coupled to an amplifier. The captured vibration
signatures are analyzed. The tap change switching time interval is
determined. This specific time interval is defined as a characteristic time
of the tap change process. It is sent by means of an output current to an
online monitoring system. Together with the statistical methods named
control chart and Shewhart, the characteristic time is applied as a
criterion of the tap changer monitoring. Results from on-site
measurements show that the characteristic time under normal operation
may be precisely obtained. Significantly, different vibration signals and
different characteristic time during the tap change process under normal
condition and fault conditions may also be seen. An acoustic monitoring
system is thus suitable for detecting major defects in a tap changer.

In conclusion, both the top-oil temperature modelling and acoustic
monitoring system for the tap changer have good potential to be part of a
comprehensive condition monitoring system for power transformers.



Zusammenfassung

Leistungstransformatoren sind komplexe wund damit Kkostspielige
Betriebsmittel. Storungen konnen zur Zerstorung des Transformators
sowie der angrenzenden Betriebsmittel fiihren. Zudem besteht dabei Gefahr
fiir Mensch und Umwelt. Routinewartungen verringern das Stérungsrisiko,
sind allerdings sehr teuer. Die bessere Alternative ist die
zustandsabhdngige = Wartung  durch  eine Online-Uberwachung
charakteristischer Transformatorkennwerte mittels Uberwachungs- und
Diagnosewerkzeugen. Das erlaubt eine Verldngerung seiner Laufzeit, seiner
Erhaltung und Modernisierung sowie, wenn notwendig, eine rechtzeitige
Auswechslung des Transformators.

Ein preisgiinstiges Uberwachungswerkzeug kann nur durch Fokussierung
auf die wichtigsten Kennwerte des Transformators gewdahrleistet werden.
Die Kennwertauswahl erfolgt durch Fehlerstatistik und durch Analyse der
erwarteten Fehlerfolgen. Aktuelle statistische Untersuchungen an
Leistungstransformatoren heben besonders die Wichtigkeit der
Uberwachung der Temperaturen in den Wicklungen, -einschlieflich
Isolierung, sowie des Stufenschalters hervor. Demzufolge sind in der
vorliegenden Arbeit verldssliche und preiswerte Moglichkeiten zur Online-
Uberwachung der Deckeléltemperaturen sowie der Stufenschalter
untersucht worden.

Thermisches Modell zur Online-Uberwachung der
Deckeloltemperatur in Leistungstransformatoren

Die Temperatur im sogenannten Hot-Spot (Heifspunkt) der Wicklungen ist
von grofdem Einfluss auf die Verlasslichkeit des Leistungstransformators,
da sie die Lebensdauer der Isolation bestimmt. Die Erforschung der
direkten Temperaturmessung im Heifdpunkt ist derzeit noch nicht
abgeschlossen. Gemafd dem internationalen Standard [IEC 60354, 1991]
kann der Heif3punkt hingegen auch aus der Deckeloltemperatur
(Temperatur im oberen Bereich des Transformatorols) abgeschatzt
werden. Die Deckeldltemperatur lasst sich unkompliziert oberhalb der
Kiihleinheiten messen. Der thermische Zustand wird wesentlich durch die
Transformatorlast und der damit einhergehenden Zunahme der
Wicklungsoltemperatur bestimmt. Wobei die Kiihleinheiten, dass heif3t die
Lifter und Pumpen, die Einhaltung einer zuldssigen Deckeloltemperatur
sicherstellen. Unregelmafdigkeiten der Kiihleinheiten kénnen bei guter
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Modellierung der Deckeloltemperatur, durch die Differenz zwischen
modelliertem und gemessenem Temperaturwert erkannt werden.

Wichtig ist demnach eine zuverldssige dynamische Modellierung der
Deckeldltemperatur anhand von Messdaten aus langeren
Versuchszeitraumen. Gegenwartig werden diverse physikalische Modelle
fir die Abschiatzung der Deckeloltemperatur verwendet, von denen
einzelne in dieser Arbeit vorgestellt werden. Die ausgesuchten
physikalischen Modelle beruhen auf den internationalen Standards
IEC60354 und IEEE Std. C57.91. Da einige Konstanten der Modelle, von
Herstellern nicht angegeben sind, werden diese anhand der Methode der
kleinsten Quadrate abgeschatzt.

Seitdem kiinstliche neuronale Netzwerke in vielfaltigen Einsatzgebieten
verstirkt eingesetzt werden, existiert das Interesse diese fiir die
Modellierung der Deckeloltemperatur zu verwenden. In dieser Arbeit
werden derartige numerische Modelle basierend auf einem kiinstlichen
neuronalen Netzwerk untersucht. Verwendet werden Multilayer Feed-
Forward und Recurrent Netzwerkstrukturen. Erstere werden als One-
Hidden-Layer und Two-Hidden-Layer Strukturen mit bis zu 20 Neuronen
und verschiedenen Trainingsalgorithmen erprobt. Besonders erfolgreich
waren die drei Backpropagation Algorithmen: Levenberg-Marquardt,
Scaled Conjugate Gradient und Automated Bayesian Regularization. Die
aufwendigeren Recurrent Netzwerkstrukturen wurden lediglich als One-
Hidden-Layer konfiguriert. Die erzeugten neuronalen Netzwerke werden
anschlief}end unter Berticksichtigung der optimalen trainierten
Faktorgewichtung der Eingangsgrofien in mathematische Modelle zur
Berechnung der Deckeldltemperatur tberfiihrt.

Die Deckeloltemperatur wird anhand physikalischer und neuronaler
Netzwerkmodelle fiir drei unterschiedliche Kiihlungsarten (ONAN, ONAF
und ODAF) berechnet. Als Eingangsgrofien fiir das Netzwerk werden der
letzte Zustand der gerechneten Deckeldltemperatur, des Laststroms, der
Umgebungstemperatur sowie der in Betrieb befindlichen Kiihleinheiten
verwendet. Die notwendigen Messdaten fiir die Untersuchung wurden
freundlicherweise von der AREVA Energietechnik GmbH zur Verfiigung
gestellt und mit herkommlichen Uberwachungssystemen iiber lingere
Zeitraume aufgenommen. Fir die Bewertung der Modelle wurde die
mittlere Differenz zwischen gemessener und errechneter Temperatur
herangezogen.
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Unter den physikalischen Modellen liefert das Modell aus dem IEEE
Standard C57.91 mithilfe linearer Regressionen die besten Ergebnisse. Fir
die Transformatoren vom Typ ONAN und ONAF werden Abweichungen
zwischen gerechneten und gemessenen Werten von 1,6 K und 1,3 K
gefunden. Fiir den ODAF Transformatortyp liegen die Abweichungen bei
etwa 3,3 K abhdngig vom Betriebszustand der Kiihleinheiten.

Die neuronalen Netzwerkmodelle dagegen liefern bessere Ergebnisse als
die physikalischen Modelle mit Temperaturabweichungen kleiner 1,9 K fiir
alle Transformatoren. Dem Multilayer Feed-Forward Netzwerk ist
gegeniiber dem Recurrent Netzwerk der Vorzug zu geben. Das Recurrent
Netzwerk ist zusatzlich nachteilig, wegen der komplexeren Strukturen und
der damit aufwendigeren Trainings- und Testphase. Die Multilayer Feed-
Forward Netzwerke zeigen die besten Ergebnisse, wenn sie als One-
Hidden-Layer mit geringer Anzahl Neuronen konfiguriert sind. Unter den
verglichenen Trainingsalgorithmen ermdglicht der Bayesian Regularization
Algorithmus die besten Ergebnisse, wegen der enthaltenen Methode zur
Modellgeneralisierung. Die benétigte Trainingszeit hdangt ab von der Anzahl
Neuronen in den Hidden-Layer sowie der genutzten Datenmenge. Die
geringste Trainingszeit bendotigt der Lavenberg-Marquardt
Backpropagation Algorithmus, da dieser ein Abbruchkriterium zur
Verbesserung der Trainingszeit beinhaltet.

Der besondere Vorteil der neuronalen Netzwerke gegentliber den
physikalischen Modellen ist ihre rasche Anpassung an neue
Betriebszustinde der Kiihleinheiten. Problematisch stellen sich fiir die
Modellierung stark wechselnde Umgebungstemperaturen dar, wogegen
veranderte Lastzustinde nur geringfligig die Genauigkeit der Ergebnisse
beeinflussen.

In der vorliegenden Arbeit wird gezeigt, dass durch die hohe Genauigkeit
der Deckeldltemperaturberechnung mit neuronalen Netzwerken,
Fehlfunktionen der Kiihlanlage detektiert werden konnen und demzufolge
neuronale Netzwerkmodelle fiir Online-Uberwachungssysteme der
Deckeloltemperatur gut geeignet sind.

Vibrations-Messungen zur Online-Uberwachung von Stufenschaltern
in Leistungstransformatoren

Leistungstransformatoren mit Stufenschaltern spielen eine wichtige Rolle
fir den Betrieb elektrischer Energieversorgungsnetze, da sie eine
gleichbleibende = mechanische = Netzspannung trotz  wechselnder
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Lastzustande erlauben. Der Stufenschalter ist aber insbesondere wegen der
haufigen mechanischen Schaltvorginge fiir Storungen anfallig. Es treten
speziell mechanische Fehler an Federn, Lagern, Fiihrungen und
Antriebsmechaniken sowie elektrische Fehler wie Verkokung von
Kontakten, Verbrennen von Ubergangswiderstinden und
I[solationsprobleme auf. Eine hohe Zuverlassigkeit dieser Komponente ist
jedoch fiir den Transformatorbetrieb unabdingbar.

Aufgrund der Uberwachungsméglichkeit der Mechanik ist die
Uberwachung mittels Vibrationsmessung besonders erfolgversprechend.
Im zweiten Teil dieser Arbeit wird daher ein Vibrationsmesssystem fiir die
Online-Zustandsiiberwachung des Stufenschalterbetriebs beschrieben.
Durch Vibrationsmessungen wird ein charakteristischer Zeitraum fiir den
Schaltvorgang tiiberpriift und als Kriterium fiir die Uberwachung des
ordnungsgemafden Zustands des Stufenschalters verwendet. Der Ablauf der
Hauptkontakte und Uberschaltkontakte im Umschalter wihrend des
Schaltvorgangs werden untersucht.

In modernen Transformatoren mit Hochgeschwindigkeits-
Uberschaltwiderstand findet die Ubertragung des Stroms von einem
Hauptkontakt zum anderen entlang der Ubergangswiderstinde im
Umschalter innerhalb von 40-70 ms statt und ist abhangig vom
verwendeten Mechanismus. Im fehlerfreien Betrieb ist die Ubergangszeit
konstant. Wahrend des Stufungsvorganges erzeugen die mechanischen und
elektrischen Vorgiange charakteristische Vibrationen und Gerdusche. Die
Vibrationsanalyse kann folglich viele Aspekte der Schaltvorgange
aufdecken. Die mechanischen Vibrationen geben beispielsweise Auskunft
tiber die Schaltzeit und die Riicksprungcharakteristik der
Lichtbogenkontakte, inklusive deren Unversehrtheit. Auftretende
Storungen konnen durch Abweichungen der dafiir charakteristischen
Zeitraume erkannt werden.

Die Vibrationen des Stufenschalters werden durch einen piezoelektrischen
Sensor aufgenommen und einem Verstarker zugefiihrt. Die nachfolgende
Messung der charakteristischen Zeit aus dem verstarkten Signal erfolgt in
einem Messkreis. Die Implementierung eines Mikrocontrollers ermoglicht
eine flexible Anpassung des Systems bei Anderungen der
Messcharakteristik. Das Ausgangssignal des Messkreises wird an einen
Digital/Analogwandler tlibergeben. Schliefdlich wird die charakteristische
Zeit als 4-20mA Signal in das Online-Uberwachungssystem eingespeist. Das
Uberwachungssystem wird automatisch durch das Vibrationssignal
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getriggert. Die Unterdriickung betriebsbedingter Nebengerdusche kann
durch zusatzliche Filter erfolgen.

Die Vorortmessungen wurden an einem Stufenschalter des Typs
VACUTAP® VR 400Y-123/D-10191G durchgefiihrt. Die Bedienung des
Stufenschalters erfolgte manuell im lastfreien Zustand. Die Ergebnisse aus
20 Messungen zeigen die Reproduzierbarkeit der charakteristischen Zeit im
Normalbetrieb. Es ergeben sich fiir die charakteristische Zeit abhangig, ob
eine ungerade oder gerade Stufe geschaltet wird, Standardabweichungen
von 0,2 s beziehungsweise 0,4 s. Der Prozess ist unter statistischer
Kontrolle, wie durch eine Kontrollkarte und die Shewhart Prozedur gepriift
wird. Ferner wird aus Laborversuchen deutlich, dass bei fehlerhaften
Zustanden, wenn sich beispielsweise Fremdkorper zwischen den Kontakten
befinden oder bei fehlendem Kontakt, erheblich abweichende
Vibrationssignale auftreten.

Die in dieser Arbeit dargestellten Untersuchungen belegen, dass die mittels
Vibrationsanalyse = gemessene  charakteristische Zeit und ihre
Standardabweichung als Uberwachungsgrofen von Stufenschaltern
geeignet sind. Die gesammelten Erkenntnisse stellen eine gute Basis fiir die
Umsetzung und Weiterentwicklung unter betrieblichen Bedingungen dar.



1 Introduction

Power transformers are one of the most expensive components in
electrical transmission systems. Failures in power transformers may
cause serious damage to electrical equipment. Accordingly, optimized
maintenance for power transformers is required. As routine maintenance
is a major expenditure, a condition-based maintenance should be a better
option. The information about the conditions may be used for optimising
assets, lifetime, refurbishment strategy, upgrading and replacement of
the transformer.

1.1 Background and Motivation

In order to obtain effective monitoring equipment at moderate cost, it is
necessary to focus on essential key parameters. These key parameters
may be obtained by inspection of failure statistics and estimated failure
consequences. Studies on power transformer statistics suggest that the
most important parts to be monitored are winding insulation and on-load
tap changers [CIGRE, 1983].

Thermal model

The ageing behaviour of the oil/paper insulation is determined mainly
through the thermal conditions inside the transformer. Overloading or
local overheating may cause high temperatures in transformers. Even in
the case of reduced load conditions, overheating may occur due to
reduced cooling efficiency. Thus, monitoring of temperature, loading
condition and fan/pump operations are the base information for thermal
behaviour of the transformers.

Winding hot-spot temperature is a critical parameter affecting insulation
life and safe loading practices. Measurement of the exact hot-spot
temperature is still in a research stage. However, according to the
international standards [[EC 60354, 1991], hot-spot temperature may be
estimated from the top-oil temperature if load, ambient temperature and
the winding oil temperature rise are also taken into consideration.
Consequently, the thermal behaviour of transformers may be considered
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from the top-oil temperature, which may be easily measured above the
cooling unit. Transformer thermal characteristics also depend on the
combination of fans and pumps operating during forced cooling
conditions. Therefore, an online top-oil temperature modelling should
lead to information about the thermal behaviour of the transformer and
the ability to detect a malfunction of the cooling units.

On-load tap changer

On-Load Tap Changers (OLTCs) are the main components of power
transformers and are responsible for maintaining a defined voltage band
supplied to consumers under variable load conditions. Changing a
tapping on the winding enables the turns ratio of the transformer and
thus the level of output voltage to vary. An OLTC has two main switches:
a selector switch and a diverter switch. The selection of tapping on the
transformer winding is done via the selector switch. The load current is
switched via the diverter switch. The on-load tap changer is more
susceptible to failures than other components of a power transformer
due to its complex mechanical nature [Gao, 2002].

High failure rates of OLTCs are direct consequences of mechanical
malfunctioning such as springs, bearings, shafts, drive mechanisms,
followed by electrical faults such as coking of contact, burning of
transition resistors and insulation problems. These potential faults
necessitate the assurance of the reliability of OLTCs [Handley, 2001].

According to the diverse mechanical and electrical functions of a tap
changer, several physical and technical solutions are available for tap
changer monitoring [Bengtsson, 1996]. Since most mechanical and
electric parts are enclosed in the oil filled steel tank, vibration monitoring
is promising for its non-invasive nature and its moderate cost.

During the operation of a tap changer, the series of mechanical and
electrical processes produce distinctive vibrations and noise patterns. In
principle, an analysis of these typical vibration signatures should reveal
different aspects and phases of tap changer operation. Mechanical
vibrations should include information about switching times and
bouncing characteristics of the on-load switch’s arc contacts. Since all
electric contacts are enclosed in oil filled steel tanks, an online
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monitoring of the OLTCs with a non-invasive acoustic technique is
proposed as a means to investigate the vibrating signals from a tap
change process.

In modern high-speed resistor tap changers, the current transfer over the
electric contacts via the transition resistors in the diverter switch during
the tap-change process takes place in about 40-70 ms, depending on the
type of mechanism used for switching. This transition time interval is
expected to be constant as long as no mechanical problems are involved.
Therefore, online monitoring of the tap-change transition time is a
possibility to check the reliability of the tap changer.

1.2 Aim of the Work

The aim of this work is to evaluate suitable criteria for condition
monitoring of cooling units and on-load tap changers in online power
transformer monitoring systems.

Malfunctions of the cooling units or pollution of coolers should be
detected by means of an online comparison of measured top-oil
temperature and its predicted values, which depend on the number of
operating fans and pumps. Firstly, a suitable model for top-oil
temperature prediction must be developed by investigation of different
physical and neural network models. By simulating the malfunction of
the cooling, the relation between the top-oil temperature difference and
the cooling capacity should be found. This should lead to monitoring
criterions for the alarm setting in the power transformer online
monitoring system.

Based on the assumption that the transition time during the transition
process of an on-load tap changer should reveal the status of the
mechanical part, a compact online vibration measuring system for the
transition time measurement should be developed and tested on-site.
The repeatability of the transition time should be confirmed before being
taken as a criterion for indicating mechanical problems of an on-load tap
changer.
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1.3 Qutline of the Thesis

The thesis is divided into three main parts. Power transformer
monitoring and diagnosis is introduced in the first part (Chapter 2). The
second part deals with the thermal model investigations (Chapter 3 -
Chapter 6). The monitoring of on-load tap changers is covered in the
third part of the thesis (Chapter 7 - Chapter 8).

In Chapter 2, common failures in power transformers are reviewed.
Maintenance strategy, monitoring and diagnostic parameters are also
considered.

The background information about thermal conditions in oil-immersed
power transformers including transformer losses, transformer cooling
and hot-spot temperature are studied in Chapter 3.

Chapter 4 presents long-term investigations of physical top-oil
temperature models to be used in an online monitoring of power
transformers. State of the art in top-oil temperature prediction and the
investigated models are described. The parameter estimation procedure
and top-oil temperature calculation are then explained. Finally, results
from different models are compared and discussed in detail. The
influence of starting points on the parameter estimation process and the
results of using different sets of estimated parameters are investigated.

Models for transformer top-oil temperature prediction based on neural
networks are given in Chapter 5. An introduction to neural networks
including biological neurons and the history of neural networks is also
included. The performance of different neural network structures for
thermal modelling are compared and discussed.

Chapter 6 describes applications of the top-oil temperature prediction.
First, the comparison between the performance of the physical model
and the neural network model for the calculation of top-oil temperature
is performed. The accuracy of the chosen top-oil temperature model in
different loading conditions and the effect of transient-states of ambient
temperature are investigated in detail. Finally, the potential of the model
in detecting a malfunction of cooling units is confirmed.
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The last part of the thesis begins with an introduction of tap changer
characteristic including tap changer design schemes, switching methods,
and motor drive mechanisms in Chapter 7. Failure mechanisms of on-
load tap changers along with tap changers maintenance and diagnosis in
general are studied.

In Chapter 8, a vibration measuring system for transition time
monitoring of the tap changer process is introduced. The reliability of the
measuring system is also investigated on-site. The results of the
investigations for the transition process and mechanical failures in tap
changers are shown. Statistical methods for monitoring criteria are
suggested.



2  Monitoring and Diagnosis of Power
Transformers

Power transformers are the most important and expensive components
in the electric power system. In practice, the lifetime of a grid-coupling
transformer may be as long as 60 years with appropriate maintenance.
Generally, a transformer has sufficient electrical and mechanical strength
to withstand unusual conditions. However, as transformers age, their
insulation strength deteriorates to the point that they may not withstand
certain malfunctions in regular performance, such as short-circuit faults
or transient overvoltage, subsequently causing serious transformer
failures.

2.1 Failures in Power Transformers

The term Transformer Failure may be defined [Kogan, 1988] as follows:
» any forced outage of the transformer due to its failure in service;

» trouble which requires the transformer to be returned to a factory for
repair, or which requires extensive field repair.

In-service failures of transformers may be potentially dangerous to utility
personal through explosion and fire and can potentially damage the
environment through oil leakage. Furthermore, a transformer with
catastrophic failure is costly to repair or to replace, and may result in
significant loss of revenue (e.g., loss in produced energy, process
downtime, penalties).

Transformer failures may occur because of different causes and
conditions. Generally, the causes of failures may be divided into two
groups: internal causes and external causes. Internal causes of failures
are insulation deterioration from ageing of paper or transformer oil,
damage to the winding or deformation of the winding under short circuit
force, loss of winding clamping, overheating or vibration damage to the
core, contamination of moisture and particles in the insulating oil, partial
discharge, overvoltage due to winding resonances, manufacturing/design
errors or handling during transportation, commissioning or maintenance.
External causes of failures are lightning strikes, system switching



7 2 Monitoring and Diagnosis of Power Transformers

operation (switching transient), system overloads and system faults
(short circuit). In addition to failures in the main tank, failures may also
occur in the bushings, tap changers or transformer accessories [Wang
2002].

A CIGRE working group had earlier performed a survey on failures in
large power transformers. These transformers were less than 20 years
old and were for EHV and UHV networks. Typical failure modes were
collected and tabulated from a population database with at least 5000
units. Shortened life due to accelerated deterioration of bushings and on-
load tap changers were highlighted in this publication. Faults of
mechanical origins in the active part of the transformer often resulted
from short circuit force or from possible vibration of supporting parts of
the windings or from the core itself. Dielectric faults in the winding
insulation or the main insulation may occur due to mechanical winding
displacement during a transport shock, a short circuit in the power
network near the transformer, or a high voltage stress [CIGRE, 1983].

Transformer failure data from the Eskom network in South Africa has
been reported [Minhas, 1999] in an extension of the earlier work
[Minhas, 1997]. The failure analysis was based on 188 power
transformers in the voltage range from 88 kV to 765 kV with power
ratings from 20 to 800 MVA. The analysis showed that ageing related
failures were dominant in smaller transformers. In the medium power
rating class, tap-changer failures constituted the highest failure rate.
Insulation design failure was the most common cause in the early service
period of large transformers.

The percentage of different failure modes of large power transformers is
shown in Figure 2.1. The results agree in a certain extent to those
obtained in the earlier work [Minhas, 1997] in that major failures are due
to tap changers, ageing and lightning/switching surges. Tap changers,
bushings and windings contributed to about 79% of the severe and
intermediate failures recorded during year 1996-2006. Recent
information on failures of transformers from Eskom [Jagers, 2007]
showed that tap changer related failures were the most prominent.



2.2 Monitoring and Diagnosis 8

On-load tap changers Lig_htni.ng / _
41% Switching Transients
12% Core
Windings 16%
26% Other
11%,
Short
Other Circuit
Accessories 8% Aging
11% 30%
Tank and M o
. . . agnetic circuit
dielectric fluid a1 g Tap Changer
8% 2% b,
12% 23%

Figure 2.1  Percentage of failures of large power transformers from CIGRE
(left) [CIGRE, 1983] and from Minhas (right) [Minhas, 1999]

2.2 Monitoring and Diagnosis

Nowadays, there is a trend in the industry to change from traditional
time-based maintenance (TBM) to condition-based maintenance (CBM).
The CBM is more appropriate because the average age of the
transformers in service is increasing and approaching the end of nominal
design lifetime. Instead of doing maintenance at a regular interval,
maintenance is carried out only under a certain condition indicated by
the equipment. The need for better nonintrusive monitoring and
diagnostic tools to assess the internal condition of transformers is thus
very strong.

The terms monitoring and diagnosis must be clearly differentiated.
Monitoring is here defined as a persistent online collection of raw data
and warning signals from the equipment under supervision while the
equipment is operating. Generally, a monitoring system includes sensor
units for online application, data acquisition systems and data processing
[Bengtsson C, 1996], [Leibfried, 1998], [Tenbohlen, 2000].

Development of new techniques and applications of condition monitoring
have become one of the most important tasks for equipment
manufacturers and utilities since the beginning of 1990s. Monitoring and
diagnosis tools are mandatory to keep track of the power transformer’s
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operational levels. The monitoring system must be designed for long-
term operation with a high reliability due to the lifetime of power
transformers in the range of 30 years and more. It should be inexpensive
and able to be retrofitted.

The time resolution of the online measurements provides the ability to
determine the rate of change in the monitored parameters. It should be
distinguished whether the change is gradual over a long period or
sudden. The exact time of the change should be calculated. Then, the
information may be used to determine the appropriate course of action.

One of the primary challenges to the online approach is the management
of a tremendous amount of data. Today’s microprocessor technology
provides a sophisticated means to extract the essential information. The
data acquisition system incorporates sensors, signal conditioning, timing
and control, and memory to store data for a short period. The use of a
true multitasking computing environment is pertinent to a monitoring
system that performs a number of tasks simultaneously. Storage of data
must be organized to be conveniently accessible to the user.

Diagnosis comprises interpretation of offline and online measured data.
Offline diagnosis has served the industry well and it continues to play an
important role in the reliability of power systems. The offline application
provides management and strategy information. It identifies the serious
changes that take place between test intervals and supports the decision
as to which part needs to be removed from service.

Nowadays, engineers and researchers are seriously investigating the
development of an expert system employing artificial intelligence (Al)
modelling techniques for transformer diagnosis. Software expert systems
should be able to access the condition of transformers and should allow a
corrective action with an optimal time. However, this potential has not
yet been realized [Leibfried, 1998], [Ward, 2000], [Stirl, 2006].
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2.3 Online Monitoring Techniques

A power transformer has to withstand thermal, electrical and mechanical
stress. This, in turn, results in a degradation of the oil/paper insulation
system. Degradation means a reduced insulation quality. Local discharges
lead to winding breakdowns and hot spots of oil temperature accelerate
aging behaviour.

Monitoring a large number of parameters means high cost. The challenge
is to balance the functions of a monitoring system and its cost and
reliability with the value-added outcomes. In order to get effective
monitoring equipment at moderate costs, it is necessary to focus on the
key parameters, the selection of which is based on failure statistics and
the estimated consequences of the respective failures.

2.3.1 Load and Operating Conditions

Continuous online monitoring of current and voltage together with
temperature measurements provide a trace for thermal performance of a
transformer and gives an individual load profile essential to distribution
system planning. Measurements of voltages and currents, together with
the tap changer position, allow the calculation of the power transmitted
through the transformer. In addition, some other quantities like oil level
in the compensator and the tap changer tank, as well as the oil pressure
in the bushings, are measured in order to provide more information
about the transformer condition.

Voltages may be measured using the measuring tap of the bushings, in
the case of capacitor bushings. If there are no capacitor bushings
available, voltages may be picked up by any kind of external voltage
transformers. Current transformers may be either mounted in the
bushing domes for newly designed transformers or else an external
current transformer may be used for current measurements [Leibfried,
1999].
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2.3.2 Thermal Performance

The degradation of transformer insulation depends on the hot spot
temperature inside the transformer winding. The hot spot temperature
may be measured by fibre optic temperature sensors installed inside the
transformer winding. The development of fibre optic devices to monitor
hot-spot temperature directly is the beginning of the monitoring
technology [Kirtley 1996]. However, there are several drawbacks of this
technique. First, the exact location of the hot spot has to be known.
Moreover, optical sensors have to be placed inside the transformer and
can weaken the insulation system. Consequently, only new transformers
may be equipped with these sensors.

Another way to determine the hot spot temperature is to measure certain
parameters such as top-oil temperature, ambient temperature, and load
current combined with a thermal model for calculating the hot spot
temperature. Hot-spot temperature is consequently used for determining
the aging behaviour of the oil/paper insulation.

2.3.3 Insulating Oil

Thermal and electrical faults such as overheating, arcing, partial
discharges or local breakdown in power transformers are always related
to the formation of gases dissolved in the oil. Thus with the analysis of
gasses dissolved in the oil, such faults may be distinguished from each
other. The method of gas-in-oil analysis is based on analyzing the types,
concentration and production rates of generated gasses. If a certain
generation rate is exceeded, gas bubbles can arise. These gas bubbles
may cause a local breakdown if they come into regions of the insulation
system with high electric field strength.

Different types of faults produce different key gases and different
combinations of gases. The evaluation of gases in oil tests commonly
considers the concentration of hydrogen (Hz), methane (CH4), acetylene
(CzHz2), ethane (CzH4), carbon monoxide (CO), carbon dioxide (COq),
nitrogen (Nz), and oxygen (0z). The relative ratios and the amount of gas
detected in the sample are used to predict problems with the insulation
structure. For instance, arcing leads to the generation of acetylene (C2H2)
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and carbon oxides (CO, CO:) that are formed by overheated cellulose.
Heating the oil produces ethylene (C2H4).

It is also necessary to take into account not only the absolute
concentrations but also the production rates of the different gases.
Moreover, the type of transformer under investigation should be
considered when making the analysis: a generator step-up unit shows a
different pattern than a system transformer or a HVDC transformer.
Traditionally, the gases are extracted from oil samples, which are taken
manually at regular intervals, normally every one or two years depending
on the transformer.

For on-line monitoring, the Hydran combustible gas sensor,
manufactured by GE Syprotec Inc. is one type of commercially available
gas sensors [Bengtsson C, 1996], [Leibfried, 1998], [Tenbohlen, 2000].
The sensor measures the cumulative gas quantity based on a fuel cell and
in relation to a proportional distribution formula (H2 (100%), CO (18%),
CzH2 (8%), Cz2H4 (1.5%)) in ppm. The increase in the quantity of gas may
be used as a starting point for a conventional gas analysis to draw
conclusions about the type of the fault. Sensors that are more complex
(e.g. based on infrared technology or gas chromatography) may detect
several or all of these gases.

Recently, applications of artificial intelligence (AI) combined with the
dissolved gas-in-oil analysis have been quite promising in detecting
thermal faults, low-energy discharge (partial discharge), high-energy
discharge (arcing) and cellulose degradation [Wang?, 2000].

2.3.4 Partial Discharge Measurement

The properties of the insulating materials in transformers may degrade
by partial discharge (PD) which may lead to eventual failures. Abnormal
levels of PD may indicate conditions such as voids in the insulation, de-
lamination at insulation interfaces, cracking or fissures in brittle
insulation, contamination in the insulation, “electrical trees” in the
insulations, abnormal electrical stress areas due to improper
manufacture or application. The acceptable PD limits for new
transformers depend on the voltage and size of the transformer. The
maximum charge may range from 100 to 500 pC [Wang, 2002].
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PD causes high-frequency currents that can be detected electrically. The
electric PD measurements have certain drawbacks and limitations for on-
site/online measurements, e.g. the low applicability of sensors and
receptivity for several disturbances. The use of electromagnetic ultra
high frequency (UHF) signals (typically 1-2 GHz) has been developed to
detect PD in gas-insulated substations and has been applied to
transformers. The advantages are that the sensors do not need any
electric connection to the high voltage circuit and the measurements are
independent from the outer disturbing signals such as corona
[Markalous, 2006].

Acoustic PD measuring methods have been developed to detect the
mechanical stress waves which are generated by PD pulses that
propagate through the surrounding oil (in the range of 100 to 300 kHz).
The acoustic emission sensors can be mounted on the transformer tank
wall. The PD may be located three-dimensionally based on the arrival
time of the pulses at different sensors. Due to the attenuation of the
signal by the oil and winding structure, the sensitivity of the
measurements depends on the location of the PD. Thus, the deeper the
PD is located inside the winding the greater the attenuation [Grofmann,
2002].

PD may also be detected indirectly, using chemical techniques such as
measuring the degradation products produced by the PD, mainly
hydrogen [Kiichler, 1996].

2.3.5 HV Bushing Monitoring

Capacitive high voltage bushings are critical components of the power
transformer. The two most common bushing failure mechanisms are
moisture contamination and partial discharge.

Moisture usually enters the bushing via deterioration of the gasket
material or cracks in terminal connections resulting in an increase in the
dielectric-loss and insulation power factor. Tracking over the surface or
burning through the condenser core or a breakdown between two
adjacent layers of a capacitor bushing is typically associated with partial
discharge. These problems increase the power factor. As the
deterioration progresses, increases in capacitance will be observed.
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Thus, measurement of dissipation factor (tand)and capacitance are
widely used as methods for detecting the early stage of insulation defects
of capacitive apparatus with multi-layer insulation like a bushing. A
classical Schering bridge technique may be used, particularly to measure
capacitance for offline measurement. This usually requires a standard
low loss capacitor at the voltage rating of the equipment under test.

Online tand measurement of HV capacitive equipment in substations is
mainly based on comparative methods. The tand is measured by
comparing the phase angles between the measured current of the tested
object and a reference voltage.

A HV bushing online monitoring method is the current summation
method. The basic principle is that if the system voltages in a three-phase
system are perfectly balanced and the bushings are identical, the vector
sum of the bushing currents will be zero. In reality, bushings are never
identical and system voltages are never perfectly balanced. As a result,
the sum current is a non-zero value and is unique for each set of
bushings. The initial sum current may be obtained and the condition of
the bushings may be determined by evaluating changes in the sum
current phasor. Thus, the online monitoring on a single-phase
transformer is not possible with this method [Lachman, 2000].

The capacitive controlled bushings can also be monitored online in a
simple manner based on the use of a capacitive voltage sensor that is
installed at the measurement tap of the bushing. The monitoring of the
change in the bushing capacitances is achieved by means of a three-phase
voltage measurement. The output signal of a voltage sensor is compared
with the two remaining phases. The detection and evaluation of the
overvoltage is the basis for the evaluation of the bushing insulator
reliability [Stirl 2004].



3 Thermal Behaviour of Power Transformers

The transformer thermal performance is one of the basic criteria which
limit the transformer’s load ability and usable life. Aging or deterioration
of insulation is a function of time and depends on temperature, moisture,
and oxygen content of the oil. The moisture and oxygen contributions to
insulation deterioration can be minimized. However, the insulation
temperature is still the controlling parameter. Experimental evidence
indicates that the relation of insulation deterioration to time and
temperature follows an adaptation of the Arrhenius reaction rate theory
that has the following form [IEC 60354, 1991].

3.1
Life duration = e [a +/5/T] (3.1)

Where a and g are constants and T is the absolute temperature.

The relation can be used to make meaningful comparisons based on rate
of ageing via the following simpler exponential expression of Montsinger:

- 3.2
Rate of ageing = constantx e = ~0] (32)

Where p is a constant and 6 is a temperature in degrees Celsius.

The constant in the equation depends on many factors, such as the
original quality of the cellulose products (raw material composition,
chemical additives) and environmental parameters (moisture content,
free oxygen in the system). The coefficient for temperature variation
pmay be taken as a constant over the actual range of temperature
between 80 °C and 140 °C. The rate of ageing is doubled for every
increment of approximately 6 K.

The rate of ageing prediction is based on the winding hot-spot
temperature. For transformers designed in accordance with IEC 76, a
usual reference value (rate of ageing = 1.0) at rated load and normal
ambient temperature is 98 °C. The temperature distribution in most
apparatus is not uniform. The part, which is operating at the highest
temperature, will ordinarily undergo the greatest deterioration.
Therefore, the highest (hottest-spot) temperature is considered for the
aging effect.
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3.1 Hot-spot Temperature

The most important factor limiting the loading capacity and the service
life of an oil-paper-insulated power transformer is the highest
temperature in the winding area, the so-called hot-spot area. This is
because the principal factor determining the ageing of a transformer is
the thermally activated chemical process deteriorating the insulation in
the winding hot-spot area. In the international standard [IEC 60354,
1991], a linear transformer temperature behaviour diagram is assumed

as depicted in Figure 3.1.

Top of |, . H-g H
1 Top oil —_— ot-spot
winding |e D - l/
‘_ Conductor temperature rise
 Average oil g 7
:': Oil temperature rise
Bottom oil
Bottom of i .
. » Temperature rise
winding

Figure 3.1  Transformer temperature behavior based on IEC 60354

This diagram is a simplification of a more complex distribution based on
the following assumptions:

Oil temperature rise inside the windings increases linearly from the
bottom to the top;

Temperature rise of the conductor at any position up the winding
increases linearly parallel to the oil temperature rise, with a constant
difference g between the two straight lines (g is the difference between
the average winding temperature rise and the average oil temperature

rise);

Hot-spot temperature rise is higher than the temperature rise of the
conductor at the top of the winding because of the increase in stray
losses. To take account of this non-linearity, the difference in
temperature between the hot spot and the oil at the top of the winding is
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made equal to H-g. This H factor varies from 1.1 to 1.5 depending on
transformer size, short-circuit impedance and winding design. The
suggested H factors are given in Table 3.1 [IEC 60354, 1991].

Distribution Medium and large transformers
transformers
ONAN ON... OF... OD...
H factor 3.0 2.5 1.5 1.5

Table 3.1  Hot-spot factor (H)

3.2 Transformer Losses

No-load losses (Pn) and load losses (Ps) are the two significant sources of
heating considered in the thermal modelling of power transformers. Both
loss components combined can be defined as the total loss (Pr) of the
transformer. Load losses or short-circuit losses are proportional to the
square of the load factor (K) flowing in the windings, as seen from Eg.
(3.3).

Py =PK? + Py (33)

No-load losses are hysteresis losses and eddy losses in the transformer
core occurring during the energization of the transformer. The
magnitude of the no-load losses is influenced by various factors such as
core design, quality of core plate material, induction and mass of core
[Tenbohlen, 2001].

Hysteresis loss is due to the elementary magnets in the material aligning
with the alternating magnetic field. The energy used to turn each domain
is dissipated as heat within the iron core. When a magnetic field is passed
through a core, the core material becomes magnetized. To become
magnetized, the domains within the core must align themselves with the
external field. If the direction of the field is reversed, the domains must
turn so that their poles are aligned with the new direction of the external
field. This loss, called hysteresis, may be thought of as resulting from
molecular friction. Hysteresis loss may be held at a small value by proper
choice of core materials.
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Eddy currents are induced in the core by the alternating magnetic field.
The core of a transformer is usually constructed of some type of
ferromagnetic material because it is a good conductor of magnetic lines
of flux. Whenever the transformer is energized by an alternating-current
source, a fluctuating magnetic field is produced. This magnetic field cuts
the conducting core material and induces a voltage into it. The induced
voltage causes random currents to flow through the core, which
dissipates power in the form of heat. These undesirable currents are
called eddy currents.

The amount of hysteresis and eddy loss is dependent on the exciting
voltage of the transformer. To minimize the loss resulting from eddy
currents, transformer cores are laminated. Since the thin, insulated
laminations do not provide an easy path for current, eddy-current losses
are greatly reduced.

Load losses or short-circuit losses consist of copper loss due to the
winding resistance and stray load losses due to eddy currents in other
structural parts of the transformer. The copper loss consists of DC
resistance loss and winding eddy current loss. The resistance of a given
winding is a function of the diameter of the wire and its length. Using the
proper diameter wire may minimize copper loss.

Table 3.2 shows the loss characteristics of different on-site power
transformer types, which depend on the power of the transformers.

Rated : Short-circuit No-load
Transformer Cooling

tvpe power type loss loss

yp (MVA) (kW) (kW)
Generator 850 ODAF 2060 370
Grid Coupling 600 OFAF 1666 313
Generator 600 OFWF 1520 290
Grid Coupling 300 ODAF 850 179
Generator 273 OFWF 640 205

Grid Coupling 150 ONAF 414.2 67.52
Grid Coupling 40 ONAN 135 20

Table 3.2  Losses from different types of transformers
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3.3 Transformer Cooling Systems

Cooling in the transformers involves the transfer of heat from the core
and windings to the insulating oil. The oil circulation in the winding may
be associated with different types of cooling. The cooling systems ONAN
(Oil Natural Air Natural) and ONAF (Oil Natural Air Forced) use radiators
for heat exchange. The heat resulting from the losses is transferred to the
oil in the tank and the natural circulation of the oil transfers the heat to
external radiators. The radiators increase the cooling surface area of the
transformer tank. Forced air-cooling is commonly applied on large power
transformers, where fans are used to blow air over the surface of the
radiators, which can double the efficiency of the radiators.

In the case of very large radiators, additional special oil pumps are
sometimes used to increase the flow of oil. Consequently, the efficiency of
the radiators is increased. With the cooling type OFAF (0Oil Forced Air
Forced), the circulation of the oil is forced by additional pumps and the
pumped oil flows freely through the tank. The transformers supplied
with this cooling type are called non-directed oil flow transformers. In
directed oil flow transformers (ODAF - Oil Directed Air Forced), the
pumped oil is forced to flow through the windings. The radiator design
on OFAF and ODAF transformers can differ substantially to the radiator
design on ONAF transformers. Radiators are sometimes called coolers
instead.

For some large power transformers, water-cooling may replace large
radiators (ODWF - Oil Direct Water Forced). Large power transformers
may also have additional ratings for multiple stages of forced cooling.



4 Top-oil Temperature Prediction Based on
Physical Models

Currently, there are various proposed types of physical models to
determine the top-oil temperature in power transformers. The top-oil
temperatures predicted from some of these models are suitable for
applying in the power transformer on-line monitoring system.

4.1 State of the Art

The IEC60354-Loading Guide for Oil-Immersed Power Transformers has
suggested a model for top-oil temperature calculation [[EC 60354, 1991].
The model captures the basic characteristics that the top oil is a mixture
of various oil flows, which have circulated along and/or outside the
windings. The different types of cooling are treated separately in the
calculation because of the differences in the oil flows. It is assumed that
the oil circulation in the winding for ON-cooled (Oil Natural) and OF-
cooled (Oil Force) transformers is caused by thermal convection.
However, for OD-cooled (0il Directed) transformers the rate of flow of
the oil is mainly governed by the pump and thus is not dependent on the
oil temperature.

The IEEE Std. C57.91 Guide for Loading Mineral-Oil-Immersed
Transformers [IEEE Std. C57.91, 1995] has proposed another top-oil rise
temperature model for top-oil temperature prediction. This model is
based on the concept that the change in top-oil temperature rise over
ambient temperature is caused by the change in loading condition.
However, the temperature calculations assume a constant ambient
temperature. Thus, this fundamental model has the limitation that it does
not accurately take account of the effect of daily variations in ambient
temperature.

Lesieutre from Massachusetts Institute of Technology [Lesieutre, 1997]
has proposed a modification model of the IEEE top-oil rise temperature
model by taking account of ambient temperature variations, oil viscosity,
winding dynamics, and various types of thermal losses in the
calculations. The model parameters were estimated from manufacturer’s
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data and off-line tests. The model predicts top-oil temperature more
accurately and can be implemented in an on-line system. Good results
were found using data from a transformer operating in the forced-oil, -air
cooling state.

Tylavsky has later modified the model of Lesieutre. In his work, some
sources of error that affected top-oil temperature predictions were
investigated [Tylavsky, 2000]. The result showed that the input error
caused by database quantization, remote ambient temperature
monitoring and low sampling rate account for about 2/3 of the errors
from the field data. Nevertheless, only some cooling types were
considered in this simplified model.

Tenbohlen has presented a top-oil temperature model, calculated under
consideration of the one-body system, which represents the thermal
behaviour of a transformer. The model assumes that, under stationary
conditions, all losses are transferred to the environment via the thermal
resistance of the cooling equipment. In case of fluctuations in ambient
temperature or load, the thermal capacity of the transformer has also
been taken into consideration. This, together with the thermal resistance,
results in the thermal time constant of the transformer. The reliability of
the model is proved so that it is possible to detect failures of the cooling
system, such as failures of pumps or fans, by comparison of measured
and calculated top-oil temperature [Tenbohlenz, 2000].

A fundamental thermal model based on thermal-electric analogy, heat
transfer theory and definition of non-linear thermal resistance was
another competing choice [Swift, 2001]. The key feature of this model is
the use of a current source analogy and a non-linear resistor analogy to
represent heat input due to losses and the effect of air or oil cooling
convection currents respectively. A 250 MVA transformer was used as a
sample model test. The results were shown very positive. However, the
tests were carried out in a relatively short measuring period (<3days)
during the steady state of ambient temperature.

Another thermal model of an oil-immersed power transformer based on
thermal-electric analogy was also proposed. The model was based on the
principles of heat exchange and electric circuit laws [Tang, 2004]. A set
of differential equations was derived to calculate both the transient-state
temperatures and the stationary-state equilibrium in the main parts of a
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transformer. For the problem of thermal parameters identification, a
genetic algorithm was employed to find global solutions for thermal
parameters using on-site measurements.

The next attempt for more accurate calculations of hot-spot and top-oil
temperature was introduced in 2005. The investigations were done
during transient conditions based on data received in a normal heat run
test (i.e., the top-oil in the tank of the transformer and the average
winding-to-average oil gradient). Oil viscosity changes and loss variation
with temperature are taken into account. However, complex constant
parameters are necessary in these physical models. Furthermore, the
first-order differential equations of the models themselves are rather
complicated. On the other hand, it has been shown that these thermal
models yield good results for a short period of examination [Susa, 2005].

4.2 Top-oil Temperature Physical Models

From the references mentioned above, four different physical models for
top-oil temperature calculation were chosen to be investigated in this
work.

4.2.1 1EEE Std. C57.91 Top-oil Temperature Rise Model

As a thermal model for an on-line monitoring system, the IEEE/ANSI
C57.115 standard top-oil temperature rise model was chosen as a
fundamental model for the prediction of top-oil temperature [from here
on Model A]. This model predicts that an increase in the load (current) of
the transformer will result in an increase in the losses within the device
and thus an increase in the overall temperature [IEEE Std. C57.91, 1995].
The temperature model is governed by the following first-order
differential equation.

(4.1)
TO dt

The top-oil temperature rise at a time after a step load change is given by
the following exponential expression Eq. (4.2) containing an oil time
constant. The derivation of this equation may be found in Appendix A.
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-Al
Oro = 0100 —Orps | 1-€70 |+ 670, (4.2)

The ultimate temperature rise depends upon the ratio of actual load to
rated load (K) and ratio of total loss to no load loss (R) as in Eq. (4.3).

n

K2R +1
R+1

9T0,oo = QTO,R( (4-3)

The exponent (n) in the temperature rise equation depends upon the
cooling state. The suggested exponents in the temperature rise equations
are given in Table 4.1 [IEEE Std. C57.91, 1995].

Cooling type | Oil exponent (n)
ONAN 0.8
ONAF 0.9
OFAF 0.9
ODAF 1.0

Table 4.1  Oil exponent values from different cooling types

The original top-oil time constant is given as

C
Tr = Oro.r Pth (4.4)
T

The thermal capacity (Cwx) is given by the following equation for the
ONAN and ONAF cooling modes:
Cn = 0.0272 x (weight of core and coil assembly in kilograms)
+ 0.01814 x (weight of tank and fittings in kilograms) (4.5)
+ 5.034 x (litres of oil)

For either directed or non-directed forced-oil cooling modes the thermal
capacity is given by the following equation:
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Cen = 0.0272 x (weight of core and coil assembly in kilograms)
+0.0272 x (weight of tank and fittings in kilograms) (4.6)
+ 7.305 x (litres of oil)

The top-oil temperature is then given by

Pro = 0o + Uypp (4.7)

4.2.2 Semi-physical Model

This modified top-oil temperature model is based on the concept
originally developed from the IEEE top-oil temperature rise model. The
ambient temperature is directly considered in the first-order differential
equation of the model [Lesieutre, 1997].

di
Tro dtTO =~Uro + 9, ) + Uro.- (48)

Using forward Euler approximation for the time derivative:

dpoli] Groli]l-holi-1] (4.9)

dt At

The linear regression technique is applied to the model. When the oil
exponent (n) is assumed to be 1 in this state, Eq. (4.9) may be expressed
in the following discretized form:

, Tro , At ,
Folil=—2— 9, [i-1]+ ——— 3
TO[’] Top+ M To[l ]"‘ Top+ M amb[l] 410)
At p R At o p '

@ e ) S T Ak

The derivation of this equation may be found in Appendix B. The
simplified model can be found as the following:

Gholi]= 71 holi - 1]+ (1= 0y )1+ K[ + 75 (4.11)
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The parameter J;, /2 and J3 are obtained from the parameter estimation
method.

Tylavsky modified the linear semi physical model in Eq. (4.11) later. The

term (1-/;) is replaced with an arbitrary coefficient J4 [Tylavsky, 2000].

The modified model in Eq. (4.12) is defined in this work as Model B.
Urolil= 11 00li 1]+ 7,0, 1]+ 1,K[iF + 5 (412)

a

4.2.3 IEC60354 Steady-state Temperature Equations

The IEC model [from here on Model C] distinguishes between different
types of cooling modes. The basic idea of the model is that the top oil is a
mixture of various oil flows, which have circulated along and/or outside
the various windings [IEC 60354, 1991].

Normally, the temperature difference between the main windings is not
important for ON cooling. The oil temperature at the top of the winding
is, for all windings, taken as the temperature of the mixed top oil in the
tank. For OF and OD cooling, on the other hand, the oil temperature at the
top of a winding is taken to be the bottom oil temperature plus twice the
difference between the average oil temperature inside that particular
winding and the bottom-oil temperature. Therefore, top-oil temperature
may be calculated as below.

ON cooling
K2R+1)
U =0, + QTO,R (4.13)
R+1
OF and OD cooling
K*R+1Y
ﬁTO =Uumb t QBO,R( R+l + 2(9MO,R —URro,r )K g (4.14)

The exponents x and y in temperature rise equations depend upon the
cooling state and the type of transformers. The suggested exponents used
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in the temperature rise equations for medium and large power
transformers are given in Table 4.2 [IEC 60354, 1991].

Cooling type | Oil exponent (x) | Winding exponent (y)

ON... 0.9 1.6
OF... 1.0 1.6
OD... 1.0 2.0

Table 4.2  0Oil exponents and winding exponent from different cooling types

4.2.4 One-body Model

The thermal behaviour of the whole transformer can be explained by a
one-body equivalent circuit as show in Figure 4.1. The thermal losses in
the active part are presented here as a current source (Pr). In stationary
state, these losses are transferred to the surrounding via the cooling
equipment (R:). However, because of the temporary change of heat flows
or fluctuations in ambient temperature, the thermal capacitance (Cw) of
the transformer must be additionally taken into account [Tenbohlen,
1999].

Figure 4.1  One-body diagram of the transformer

The temperature drop over the parallel circuit between the thermal
capacity (Ca) and the thermal resistance (R:) corresponds to the
temperature rise of oil in the transformer. The neutral of the circuit is
provided as the ambient temperature. Based on an assumption that all
losses are transferred to the environment via a thermal resistance of the
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cooling equipment and by taking the variation of ambient temperature
into consideration, the model is shown as below [from here on Model D].

-At
C,.R
Uro = (ﬁTO,oo ~ o | 1-e 0 1 Gry (4.15)
Where
ﬁTO,OO =Uump + (PSK2 + PN )Rth (416)

The losses in the individual components during the operation of a
transformer increase the temperature of the active part. The losses are
the no-load loss and load loss.

The approximated range of thermal capacitance Cix may be expressed in
terms of the specific heat capacity (c¢p) and the mass (m) of the observed
parts of the transformer. In a transformer, materials in different
quantities and with various specific thermal capacitances are used. The
thermal capacitance may be calculated from:

Cth ="il€ p, oil + "MeuCp, Cu + MEeCp, Fe + Msteel€ p, steel (4.17)

Table 4.3 shows the specific thermal capacitance of the different
components of a transformer.

Material | cp [Wh/gK]

Oil 0.5360

Copper [Cu] 0.1066

Iron [Fe] 0.1288

Steel 0.1332

Table 4.3  Specific thermal capacities
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4.3 Top-oil Temperature Models Investigation

The four models mentioned above (Model A, B, C and D) are chosen to be
examined in this work. The investigations are done using a database
collected from different types of three phase transformer units for a
period of at least one year. Due to an uncertainty associated with some
manufacturer-supplied parameters and the complicated transformer
configuration, some model parameters have to be optimized by means of
parameter estimation. Based on these model parameters the top-oil
temperature is then calculated and the performances of the models are
compared. The performance of the model is defined as the deviation of
calculated top-oil temperature from the measured top-oil temperature.

4.3.1 Parameter Estimation

Least square technique is the optimization technique, which was used in
this work for the parameter estimation. Parameter estimation is the
process of finding the values of the unknowns of a mathematical model
for simulating a complex system. A model is generally given by
differential equations or a system of equations or inequalities. Interval
computations are numerical computations over a set of real numbers.

Least square Techniques (Regression Analysis)

In statistics, least-squares techniques can be used as an approach for
assigning values to unknown quantities in a statistical model, based on
observed data. It is a mathematical procedure, which attempts to find a
function, which closely approximates a series of measured data. The
least-squares technique is commonly used in curve fitting.

The best-fitting curve is found by minimizing the sum of the squares of
the ordinate differences (called residuals) between points generated by
the function and corresponding points in the data, with the smallest
operations (per iteration). However, it requires a large number of
iterations to converge. An implicit requirement for the least squares
method to work well is that errors in each measurement be randomly
distributed. The collected data should be well chosen, to allow visibility
into the variables to be solved for (and possibly giving more weight to
particular data, referred to as weighted least-squares).
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When a function f(x;) = y; must be found for a dataset that consists of the
points (x; yi;) with i = 1, 2...n, it is firstly supposed that the function f{x) is
of a particular form that contains some parameters which need to be
determined. For instance, suppose that the function is quadratic: f(x) =
ax? + bx + ¢, where a, b and c are not yet known. The values of a, b and ¢
may be found by minimizing the sum of the squares of the residuals (S):

S= N (i =)’ (4.18)
i=1

The problem is more difficult if f{x) is not linear, but then an algorithm
like Newton's method or gradient descent can be used. Another
possibility is to apply an algorithm that is developed especially to tackle
least squares problems, for instance the Gauss-Newton algorithm or the
Levenberg-Marquardt algorithm.

4.3.2 Software Development

Two programs for top-oil calculation were developed in MATLAB. First,
the input data from different data sources are put in one file. This process
is performed in a data preparation program. In the second step, the
necessary parameters are estimated and the top-oil temperature is
calculated.

Data Preparation

The required measured data are obtained from an online monitoring
system MS 2000 supplied by AREVA Energietechnik GmbH. The original
data of different input variables are available in different sampling
periods and in individual text files. The specific software is developed in
order to combine all the input data with different sampling time intervals
into one input file.

Moreover, the information of the states of operating pumps and fans are
indicated only by the status “on” and “off” in an individual file for each
pump and each fan. The software calculates the total number of operating
pumps and fans in each period. This combined input file may be written
either in the format of Matlab or Excel, depending on the required
application.
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Parameter Estimation

The function for nonlinear curve fitting (Isqcurvefit) in the MATLAB
Optimization Toolbox is applied in the parameter estimation process.
Function Isqcurvefit solves the nonlinear curve-fitting (data-fitting)
problems in the least-squares sense. This function may be expressed in
Eq. (4.19). It is an attempt to find the coefficients x that best fit the
equation to the given input data xdata, and the observed output ydata,
where xdata and ydata are vectors of length m and F(x, xdata) is a vector-
valued function.

.1 1
m;n 2|F(x, xdata)— ydata@ =3 EZI(F(X’ xdata; )— ydata; )2 (4.19)

Results from [Vilaithong, 2005] indicate that the estimated parameters
are not constant values. They vary according to the different operating
states of pumps and fans in different periods of the year. However, in
order to simplify the model to be used in an online monitoring system,
one set of estimated parameters for each state of operating pumps and
fans should be applied for the whole year.

In this work, the whole dataset is divided into different periods
depending on the operating states of pumps and fans. In each period, the
parameters will be estimated when the operating state of pumps and fans
in that period remains constant for more than 2 hours and the load
factors are larger than 0.02. Consequently, for one operating state, there
are different sets of estimated parameters from different periods. In each
period, these estimated parameters are used to calculate the top-oil
temperature, then, the temperature deviation between the measured and
the calculated top-oil temperature is determined.

The estimated parameters from the periods with temperature deviation
less than 2K are selected to determine the average estimated parameters
of each operating state of pumps and fans (n). The time interval of
different periods (At,) is used for weighting the estimated parameters in
that period (Pnz, Pnz.). The calculation of the average estimated
parameter (I_J n) for any state of operating pumps and fans is shown as
the following equation.
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(Pnl At )+ (Pnz At )+ (Pn3 At )+...

Py = (4.20)
Atnl +Atn2 +Atn3 +...

4.3.3 Investigated Transformer Characteristics

The characteristics of the three different investigated power
transformers (Tr1, Tr2, and Tr3) are shown in Table 4.4. Three different
cooling types are considered. They are ONAN, ONAF and OFAF.

As the aim of this work is to detect malfunction of pumps or fans using
the top-oil temperature prediction, the main criteria for the calculation is
the number of operating pumps and fans. The operating states of the
cooling units of Tr2 remain constant during the investigated period
(number of operated fans = 2). The cooling operating states of Tr3 vary
as seen in Table 4.5. The total number of pumps is 8 and the total number
of fans is 8.

Transformer Tril Tr2 Tr3
Type Grid coupling | Grid coupling | Generator
Rated power [KW] 40 150 840
Rated voltage [kV] 110 245/36/6 21/233 +5%
Short-circuit loss [KW] 135 414.2 2060
No-load loss [kKW] 20 67.52 370
Type of cooling ONAN ONAF OFAF
Total number of pumps 0 0 8

Total number of fans 0 2 8

Table 4.4  Main characteristics of the investigated power transformers



4.3 Top-oil Temperature Models Investigation 32

State | Number of pumps | Number of fans
1 8 0
2 8 2
3 8 4
4 8 6
5 8 8

Table 4.5  States of pumps and fans in operation of Tr3

To apply a thermal model in an online monitoring system, the set of
estimated parameters should be able to apply in different periods of
input data. Thus, in this work, by using the parameters estimated from
one period of data to calculate the top-oil temperature in other period of
input data, the reliability of the estimated parameters is also examined.
Table 4.6 shows the different periods of the input data used for the
parameter estimation process and the top-oil temperature calculation
process.

Parameter estimation Top-oil temperature calculation
Trl January 2004 - May 2004 June 2004 - December 2004
Tr2 January 2003 - May 2003 June 2003 - December 2003
Tr3 | January 2003 - December 2003 | January 2004 - December 2004

Table 4.6  Sets of investigated data

4.3.4 Required Input Data

All model parameters are classified as seen from Table 4.7. The input
constants Ps and Py for Model A, B and D may be obtained from the data
sheets of transformers. The input constant Cx from Model A and Model D
are obtained from calculation according to Eq. (4.18).
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Model A | Model B | Model C | Model D
Input Ps Ps Ps
constant Pn - Pn Pn
Cth Cth
Input K K K K
variable Damb Yamb Vamb Pamb
#Fans #Fans #Fans #Fans

Estimated input Oror J1 Opo,r Rin
parameter J2 Omo,r

J3

J4

Table 4.7  Model parameters classification

The results of calculated thermal capacities from Eq. (4.17) and Table 4.3
can be seen in Table 4.8. Masses of transformer parts and transformer oil
are required in the calculation. These values are obtained from the data
sheet of the transformers.

moil [Kg] | meu [Kg] | mre [Kg] | Msteer [Kg] | Cen [W-h/K]

Tr1| 17000 11845 20550 7820 14063
Tr2 | 48555 27800 60000 41200 42509
Tr3 | 71000 282000 58000 82106

Table 4.8  Thermal capacities of investigated transformers

4.4 Application of Physical Thermal Models

The parameters of the above mentioned transformers are estimated for
all models. Long-term investigations at varying load currents and
ambient temperatures are performed; results are shown in section 4.4.1.
The influence of the starting values in the parameter estimation process
and the variation of top-oil time constant are later discussed in section
4.4.2 and section 4.4.3 respectively. Further, the comparison of the
performances between the models is dealt with in the last section.
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4.4.1 Results of Parameter Estimation

The estimated parameters for different models obtained from Trl and
Tr2 are shown in Table 4.9. In order to approximate an acceptable range
of the estimated top-oil rise temperature 6,z of Model A and Model C, the
most frequently measured top-oil temperature [FO] and ambient
temperature [FA] in the investigated period are also calculated. The FO
and FA of Trl, Tr2 and Tr3 are measured during June 2004 - October
2004, June 2003 - December 2003 and January 2004 -December 2004,
respectively.

The estimated 6Oz from Model A is 22 K for Trl and 29 K for Tr2. They are
in the acceptable range. However, the estimated 6y of Trl (79 K) and Tr2
(61 K) obtained from Model C are not reasonable. They are much higher
than the estimated 6 from Model A. The set of estimated parameters
from Model B show no obvious relation between each parameter.

The acceptable range of Rs from Model D is estimated from the Eg.
(4.15). It should be in the order of 104 K/W. The results in Table 4.9
show a seemingly acceptable value for R, both from Trl (6.0907*10-4
K/W) and Tr2 (1.3532*10-4 K/W).

Table 4.10 shows the estimated parameters from Tr3 with different
operating states of fans [F]. The estimated 6,z of Model A, Oporand Ouor0f
Model C and Rx of Model D decrease when numbers of operating fans
increase. However, in all models, there is no obvious relation between
each estimated parameter for different states of operating fans.

FO | FA | Model A Model B Model C| Model D
(°C) | (°O) Oror(K) | 1 J2 J3 J4 Oror(K) | R (K/W)
Trl| 34 | 16 22 0.966 | 1.350(0.619|0.028 79 6.0907*10+
Tr2| 46 | 21 29 0.951(1.877(0.947|0.046 61 1.3532*10+

Table 4.9  Estimated parameters from different models for Tr1 and Tr2
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Model A Model B Model C Model D

Oror(K)| J1 J2 J3 J+ | Osor(K)|Omor(K)| Ren(K/W)

P8FO0O| 165 |-0.747|2.668|35.361|4.877| 244 346 [8,2435*10°
P8F2| 87 0.593|7.854|15.916|0.043| 188 141 |7,6752*10°
P8F4| 75 0.425|0.596 |23.308|0.245| 186 112 {2,6405*10°
P8F6| 58 0.269 |-0.070|30.005{0.279| 159 111 {2,3369*10°
P8F8| 38 0.591|3.188 |14.657|0.171| 120 95 |1,6919*10-

Table 4.10 Estimated parameters from different models for Tr3

4.4.2 Influence of Starting Values in Parameter Estimation

In the first step of the parameter estimation process, the starting values
of the estimated parameters must be set. In this section, the influence of
these starting values is investigated.

Different starting values: 1 K, 10 K and 100 K for the top-oil temperature
rise Oror were employed in the model A and C. Results show that the
different starting values have no influence on the parameter estimation
process, in both models. The same values of the estimated parameters
were obtained from all different starting values.

For Model D, the starting values of the thermal resistance Ra: 102 K/W,
104 K/W, 102 K/W, 1 K/W and 100 K/W were applied. In Table 4.11,
results from the calculations with Tr1 show that the different starting
values do have an influence in some manner on the parameter estimation
process. Results show the same values of the estimated parameters were
obtained when the starting values were set below 1.

Starting Value R (K/W) 10-° 104 10-2
Estimated R (K/W) 2.7187*%10-3 | 2.7187*103 | 2.7187*10-3

Table 4.11 Estimated parameters from different starting value for Model D
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4.4.3 Variation of Top-oil Time Constant Values

The top-oil time constant (z.,) of Model A may also be considered when
varying the starting value. It should be remarked that when an
investigated transformer is subjected to a step variation of load, the top-
oil temperature rise does not behave exactly as an exponential function
and the oil time constant may therefore not be treated as a fixed value
[IEEE Std. C57.91, 1995]. The time constant is found to vary according to
the top-oil rise over ambient temperature at different time and may be

calculated as shown in Eq. (4.21).
( ( ‘9T0,1
Oro.r
Tro =Tror : 1

T\
‘9T 0,% _ ‘9T0,1 "
QTO,R HTO,R

Where the top-oil time constant at rated load is given by the following:

BTO,R

: (4.21)

Cin
TTO,R =Yro.R Pt (4-22)

T

In this section, the variation of 7,, with varying starting values of Oror: 1 K,
10 K and 100 K were considered in the parameter estimation process.
Results also show that the temperature deviation for all transformers
obtained from the model with the varied 7., has no significant difference
from the temperature deviation obtained from the fixed ..

4.4.4 Performance of Different Top-oil Temperature Models

To evaluate the performance of the investigated thermal models, the
following discussions focus on the calculated time evolution of top-oil
temperature for all models. Due to the influence of the ambient
temperature on the capability of the models, two different time periods
are analyzed. The first considered period involves an average ambient
temperature above 20 °C and is referred to as “summer period”. The



37 4 Top-oil Temperature Prediction Based on Physical Models

second period, termed as “winter period”, during which the average
ambient temperature is around 10 °C.

Ambient temperature, load factor and calculated top-oil temperature
courses in the summer period are shown in Figure 4.2, 4.3 and 4.4 for Trl,
Tr2 and Tr3, respectively. Ambient temperature, load factor and
calculated top-oil temperature courses in the winter period are shown in
Figure 4.5, 4.6, 4.7 for Tr1, Tr2 and Tr3, respectively.

In the summer period, the load levels of observed transformers are
different. For Trl, a low load factor is found with daily fluctuations within
a range of 0.2. The load factor of Tr2 is constant high at 0.7. A high
fluctuation of load factor between 0.2 and 0.6 is found in Tr3. There is
also a shutdown State in Tr3 from 9 August until 11 August. The ambient
temperature in this period is found in a range of variation of 20 °C for all
transformers.

In Trl and Tr2, Model B and Model D can reasonably capture the
measured temperature courses better than Model A and Model C, in
average. The top-oil temperature deviations of both Model B and Model D
are on average 2 K. The calculated temperature from Model B is always 1
K lower than the measured temperature for both transformers. The
calculations temperature from Model A and Model C for both
transformers during the increasing of either load or ambient always
show a temperature that is on average 5 K higher than the measured
temperature. This delay in temperature change might be an effect of an
oil time constant, which is calculated from the inaccurate thermal
capacitance in Eq. [4.5].

In Trl, during the period of constant ambient temperature on the 11
August, Model A also presents a similar constant top-oil temperature.
However, the calculated top-oil temperatures from other models still
decrease. This implies that the ambient temperature has a strong
influence on the top-oil temperature calculation of Model A. Conversely,
the other models react slowly on an ambient temperature change. The
short period of constant top-oil temperature is also presented in Model C.
Thus, the ambient temperature may also have an influence on the top-oil
temperature calculation of Model C.
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The calculated top-oil temperature courses of Tr3 from all models in this
period are very unstable due to the frequent changes in the number of
fans. A long period of the shut-down state can be seen. It has a strong
effect on the top-oil temperature calculated from Model B. The
temperature deviations between measured and calculated top-oil
temperature for Model C and D are very high compared to the measured
temperature. The top-oil temperature courses of Model A and Model B
run at a similar level as the measured temperature. Model A shows the
most stable top-oil temperature course. However, Model B sometimes
shows the transients in calculated top-oil temperature. Thus, Model A
and Model B have more ability than the others to calculate the top-oil
temperature during the changes of pumps and fans operation.
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In winter, the load conditions, as shown in Figure 4.5, are similar to the
load conditions in summer. A low load factor is found in Trl, and it
fluctuates strongly. It varies normally from factor 0.2 to 0.4. In some
stage, it rises up to a factor of around 1.0. The load factor of Tr2 is higher
and quite constant at 0.7. A high fluctuation in load factor between 0.3
and 0.7 is found for Tr3. The variation of ambient temperature in this
winter period is lower than in summer and occurs in a range of variation
of 10 °C for all transformers.
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Figure 4.5 Results of Tr1 during the winter period
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Model A and Model C produce fairly in consistent results. The calculated
temperature courses from both models fluctuate clearly due to the
fluctuation of the load. During the transient of the increasing load on 6
October and 7 October up to a factor of over 0.8, an increase in calculated
top-oil temperature from Model C is clearly observed. The calculated top-
oil temperature rises up to over 80 °C, which is more than a 40 K
deviation from the measured temperature. Model B in Trl can
reasonably capture the measured temperature courses over most of this
winter period. The average temperature deviation between calculated
and measured temperature in this period is 1 K. However, during the
transient of decreasing load on 5 October, the calculated temperature still
increases, while the measured temperature decreases after the transient
state. The average temperature deviation of more than 5 K can be
observed in this stage. Model D also gives reasonable results over the
period of low fluctuation of the load. The higher calculated top-oil
temperature from model D is also observed in this transient period. The
temperature deviation between calculated and measured top-oil
temperature of around 10 K can be noticed.

Figure 4.6 shows the calculations for the winter period of Tr2. All models
produce calculated top-oil temperature values that are around 5 K lower
than the measured top-oil temperature. However, all models can still
capture the measured temperature courses. Model A and Model D
present better results than the others. Strong transients of the load factor
have been observed two times within one week (2 December and 4
December). They fall down to the load factor of 0.4. Results from Model C
show explicit decreasing calculated top-oil temperature below 30 °C in
this transient period. This result confirms the observation in the last
paragraph that the influence of load on Model C is extremely strong.

Results from Tr3 are illustrated in Figure 4.7. Most of models present
highly fluctuating top-oil temperature courses, but especially model C. In
this winter period, the transients of decreasing loads can be found very
often. Fluctuations occur between load factors of 0.3 and 0.7. Model D
also shows very low top-oil temperature courses during these periods.
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4.4.5 Conclusion

The comparison of all model performances is summarised in Table 4.12.
Results are compared by means of the arithmetic average temperature
deviations over the whole calculated period, as shown in Table 4.6. The
arithmetic average is applied in order to show the sensitivities of certain
models, such as the high average temperature deviations from Model C
and Model D, which may be caused by the influence of transient load
factor or transient ambient temperature in some periods.

Model A | Model B | Model C | Model D
Tr1| 3.0K 1.6 K 44K 19K
Tr2 | 44K 1.3K 24K 1.7K
Tr3 | 45K 3.3K 124K 13.7K

Table 4.12 Average temperature deviations from different models

Results for the monthly average temperature deviation are illustrated in
Figure 4.8. The temperature deviations from Model B are found to be the
lowest of all transformers. The average temperature deviation of Model B
for Tr1 (ONAN) is 1.6 K, for Tr2 (ONAF) is 1.2 K. and for Tr3 (ODAF) is
3.3 K. The temperature deviations by other models are almost in the
same range of 2 - 4 K, except the results for Tr3 from Model C and Model
D. Model D produces the highest temperature deviation in case of Tr3
(13.7 K).

In general, it can be observed that the fluctuation of ambient temperature
has more influence on the measured top-oil temperature than the
fluctuation of the load. It has a strong influence on the top-oil
temperature calculation of Model A and Model C. When Eq. [4.7] of model
A and Eq. [4.13] of model C are considered, it can be noticed that the
ambient temperature is involved as a final state in the calculation in both
models.

Model D considers the ambient temperature in the first-order differential
equation of the model, thus the strong fluctuation of ambient
temperature has less influence than in other models.
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In Eq. [4.13] of model C, the variation of load is directly considered
without the time derivative after a step load change. Thus, a strong
fluctuation of load has also a direct influence on calculated top-oil
temperature from Model C.

The accuracy of the top-oil temperature calculation still cannot be
expected when the rapid change of the cooling units is taken into account.
The set of estimated parameters of each state of the operating cooling
units must be accurately established.

In conclusion, under the scope of this investigated database, Model B is
the most accurate physical model for top-oil temperature prediction for
transformers with all cooling types. This might be due to the
consideration of all input variables as coefficients in the model equation.
Also, all coefficients are estimated from the actual measured data.
Whereas, the calculated specific thermal capacitance is required as the
input constant of the Model A and Model D. Thus, the accurate data of the
masses of materials is necessary.
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5 Top-oil Temperature Prediction Based on
Neural Networks

Neural networks may be used to set up complex relationships between
inputs and outputs or to find patterns in data. They are also considered by
many researchers due to their great similarity to the structure of the brain,
a characteristic not shared by more traditional computational systems.
Artificial neural networks present a growing new technology as indicated
by a wide range of applications that includes transformer top-oil
temperature prediction.

5.1 State of the Art

An attempt to estimate the top-oil temperature and hot-spot temperature
using neural networks began 10 years ago. In He’'s work; the uses of static
neural networks, temporal processing networks and recurrent networks
have been explored for predicting the top-oil temperature of transformers.
The Levenberg-Marquardt algorithm has been used in the training. The
Recurrent network provided the best performance in terms of both the
mean squared error and peak error, compared with the auto regression
linear model [He 2000].

Pradhan has shown that the theoretical framework presented in his work
is applicable to the estimation of both top-oil temperature and hot-spot
temperature under dynamic loading and dynamic ambient conditions. The
generalization capability of the neural network model has been increased
due to the incorporation of Bayesian Regularization and by the optimal
combination of several networks [Pradhan 2004].

Pylvandainen has shown that, to evaluate temperature values for a
transformer supplying loads with severe harmonics, the effects of current
harmonics should be taken into account [Pylvandinen, 2007].

Another paper has introduced an alternative hybrid Recurrent Neurofuzzy
network to model the thermal condition of power transformers [Hell,
2007]. Simulations indicated that the Neurofuzzy model is more effective
than the multilayer perceptron, radial basis function, and a deterministic
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model. That is because it approximates and generalizes transformer
dynamics properly and is able to manage imprecise data.

Most publications show the results for short measuring periods (< 2
weeks). Some results are achieved from data of less than 500 samples.
However, it is important to consider a long-term period for investigation
of dynamic top-oil temperature models for further application in online
monitoring and diagnostic systems for power transformers. The variation
of loading condition and ambient temperature should be also addressed.

5.2 Introduction to Neural Networks

Neural network or Artificial Neural Network (ANN) refers to an
interconnecting group of artificial neurons that uses mathematics or a
computational model designed to reproduce some properties of biological
neural networks. In more practical term, ANNs are non-linear statistical
data modelling tools. An advantage of neural networks is that they are well
suited to solve the problems that are most difficult to solve by traditional
computational methods [Garson, 1998].

5.2.1 Biological Neurons

The human brain is principally composed of about 10 billion neurons;
each connected to about 10,000 other neurons. A typical neuron receives
electrochemical inputs from other neurons through a host of fine structure
called dendrite. If the sum of these electrical inputs is sufficiently powerful
to activate the neuron, it transmits an electrochemical signal along the
axon that splits into thousands of branches, and passes this signal to the
other neurons whose dendrites are attached at any of the axon terminals.
At the end of each branch, a structure called a synapse converts the activity
from the axon into electrical effects that inhibit or excite in the connected
neurones. When a neuron receives excitatory input that is sufficiently
large compared with its inhibitory input, it sends a spike of electrical
activity down its axon. Learning occurs by changing the effectiveness of
the synapses so that the influence of one neuron on another changes.
Figure 5.1 depicts a biological neuron (the cell body, or Soma) and its
connections (www.neuralpower.com).
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5.2.2 Structure of Artificial Neural Networks

A neural network is a structure involving weighted interconnections
among units (or neurons). They may be linear or nonlinear scalar
transformations, but most often nonlinear. Input neurons, which represent
raw information, are fed into a network and connected to an output layer
through other neurons in hidden layers. The number of hidden layers and
number of neurons in each hidden layer are user design parameters. The
general rule for network design is to choose these parameters so that the
best possible model with as few parameters as possible is obtained
[Garson, 1998].

Neurons are connected to each other very specifically, each connection
having an individual weight (described by a single number). Each neuron
generates an output signal based on its activation. It sends its output value
to all other neurons to which they have an outgoing connection. Through
these connections, the output of one neuron may influence the activations
of other neurons. Figure 5.2 shows a sample of the structure of neural
network.
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The behaviour of an ANN depends on both weights and the input-output
function so called activation function (or transfer function). The outputs
may be obtained from taking a linear combination of input signals and
their weights, then transform them with a transfer function. The neuron
calculates its activation by taking a weighted sum of the input signals. The
activation function determines how and when the summed weighted input
values merit the sending of an input signal or firing. Firing occurs when
the activation level is above the threshold level set by the learning rule. A
signal called input bias may be added to raise or lower the threshold level
of a neuron.

The network weights are adjusted by training the network. The training
(or learning) process involves adjusting the weights until an aim is
obtained. The aim involves minimizing the sum of squares of the
differences between desired and actual outputs. One complete entire
training set is called an epoch. The learning process falls into three groups
with respect to the sort of feedback that the learner has access to as the
following.

Supervised learning: involves learning with some supervision from an
external source (teacher signal). It requires the correct output answer for
each input pattern to be learned. That is, the desired target which is the
response for the vector of training cases is also presented to the network.
It allows network weights to be adjusted not only in response to the
training vector but also based on an error signal defined by the target
vector.
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Unsupervised learning: There is no explicit teacher signal in this kind of
learning. The network's task is to re-represent the inputs in a more
efficient way, as clusters or categories or using a reduced set of
dimensions. Unsupervised learning is based on the similarities and
differences among the input patterns. It does not result directly in the
behaviour of the network because its "outputs" are internal
representations. However, these representations may then be used by
other parts of the system in a way that affects behaviour. The researcher
specifies the number of clusters and the algorithm attempt to identify that
number of clusters by assessing their proximity in n-dimensional space.
Such models are also called self-organizing networks. The purpose of
unsupervised learning might be to discover an underlying structure of the
data, to encode the data, to compress the data or to transform the data.

Reinforcement learning: combines the fields of dynamic programming and
supervised programming to yield powerful machine-learning system. An
agent learns by interacting with its environment and observing the results
of these interactions. Supervised learning lets the learner know exactly
what it should have done, while reinforcement learning learns by
receiving a reward or reinforcement signal from its environment
indicating that if the behaviour was inappropriate and (usually) how
inappropriate it was for a given input by its own decision making policy
[Garson, 1998].

5.3 Training Algorithms

There are a number of learning rules or training algorithms available for
neural network models. Backpropagation is the best-known training
algorithm for the supervised learning process. It is based on the delta rule,
which was one of the most commonly used learning rules. The delta rule is
also called the Least Mean Square (LMS) method. For a given input vector,
an output vector is compared to a correct answer. If the difference is zero,
no learning takes place; otherwise, the weights are adjusted to reduce this
difference. The change in weight Dw;; from output u; to u; is given in Eq.
(5.1), where r is the learning rate, a; represents the transfer function of u;
and e; is the difference between the expected output and the actual output
of uj.
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Awij =r-al--ej (5.1)
Backpropagation is an algorithm that extends the analysis of the delta rule
to the applied networks with hidden nodes. It was created by generalizing
the Widrow-Hoff learning rule to multiple-layer networks and non-linear
differentiable transfer functions.

Generalization is a group of techniques that allows the amount of
information to be retained even when the amount of data is reduced. Input
vectors and corresponding target vectors are used to train a network unit.
It computes the error term for the output units using the observed error.
The model repeat propagating the error term back from output layer to
the previous layer and updating the weights between the two layers until
the earliest hidden layer is reached.

The weights between neurons of successive layers are initially assigned in
random. The speed and accuracy of the learning process (updating
weights process) depends on a learning rate. Typically, a new input only
leads to an output that is nearly similar to the target. This generalization
property makes it possible to train a network on a representative set of
input/target pairs and get good results without training the network on all
possible input/output pairs.

5.3.1 Levenberg-Marquardt Backpropagation

The Lavenberg-Marquardt algorithm uses an early stopping criterion to
improve network training speed and efficiency. To determine the
criterion, all data are divided into three sets. The first set is the training set
for determining the weights and biases of the network. The second set is
the validation set for evaluating the weights and biases and for deciding
when to stop training. The validation error normally decreases at the
beginning of the training process. When the network starts to over-fit the
data, the validation error begins to increase. The training is stopped when
the validation error begins to increase and the weights and biases will
then be derived at the minimum error. The last data set is for validating
the weights and biases to verify the capability of the stopping criterion and
to estimate the expected network operation on new data sets.
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5.3.2 Scaled Conjugate Gradient Backpropagation

The Scaled Conjugate Gradient is based on a well-known optimization
technique in numerical analysis called the Conjugate Gradient method. It
was designed to avoid the line search per learning iteration by using a
Levenberg-Marquardt approach in order to scale the step size. Unlike
many other standard Backpropagation algorithms, this technique does not
require any user-specified parameters and its computation is faster
[Moller, 1993].

5.3.3 Automated Bayesian Regularization

During the training period, an overfitting problem or poor generalization
capability may occur. Overfitting is when the model is allowed to draw too
many characteristics specific to the training data set. Bayesian
regularization is a modification of the Levenberg-Marquardt training
algorithm to improve the model’s generalization [Mackay!, 1992].
Generalization means how well the network will make classification of
patterns that are not in the training set. This approach involves modifying
the performance function, which is normally chosen to be the sum of the
squares of the network errors on the training set (MSE or Eg).

F=E, =;Efil(ei)2 (5.2)

The objective function in Eq. (5.2) can be generalization improved as
shown in Eq. (5.3) by a term E,, that is the sum of squares of the network
weights.

F=pEy+dE, (5.3)

The pand o parameter are optimized in Bayesian framework [MacKay?,
1992]. It is assumed that the weights and biases of the network are
random variables following Gaussian distributions and the parameters are
related to the unknown variances associated with these distributions. This
performance function results in smaller weights and biases of the network.
Accordingly, the network response will be smoother and less prone to
over-fitting.
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5.4 Neural Network Topologies

The topologies of a neural network describe how a network transforms its
input to an output. They show the pattern of connections between the
units and the propagation of data. In this work, Feed-forward neural
networks and Recurrent neural networks were considered.

5.41 Feed-forward Neural Network

Feed-forward neural networks are the most popular and most widely used
in many practical applications. They have been applied successfully to
solve some complex problems including nonlinear system identification
and control, finance analysis, signal modelling, power load forecasting, etc.
Feed-forward neural networks comprise many neurons working in
parallel. Every neuron in the layer is connected with all neurons in the
next layer by different strengths or weights. These weights are allowed to
be adapted through a learning process, which encodes the knowledge of a
network. Data enter at the inputs and pass through the network, layer by
layer to the next, until they arrive at the outputs. There is no feedback
between layers. No neuron is linked between the same layer, back to the
previous layer or skipping the layer. This is why they are called feed-
forward neural networks.

5.4.2 Recurrent Neural Network

Recurrent neural networks have a closed loop in the network topology.
They are developed to deal with the time varying or time-lagged patterns
and are usable for the problems where the dynamics of the considered
process is complex and the input data is noisy. Compared to Feed-forward
networks, Recurrent neural networks are models with feedback
connections. While a Feed-forward network propagates data linearly from
input to output, Recurrent network also propagates data from later
processing stages to earlier stages. Contrary to Feed-forward networks,
the dynamical properties of the recurrent network are important. The
values, which are computed as outputs of the network are in the recurrent
connections, and may be regarded as extra inputs to the network.
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A simple Recurrent neural network, also called an “Elman network”, is a
variation on the Feed-forward neural network. Elman networks are
commonly one-hidden layer networks with the addition of a feedback
connection from the output of the hidden layer to its input. This feedback
path allows Elman networks to learn to recognize and generate temporal
patterns (time-varying patterns), as well as spatial patterns since the
network stores information for the future reference.

At each time step, the input is propagated in a standard Feed-forward
structure and a Backpropagation learning rule is applied. The values
stored at the previous time step is used to compute for the values at the
current time step. The network can maintain a sort of state, allowing it to
perform such tasks as sequence-prediction.

5.5 History of Artificial Neural Networks

The concept of neural networks started in the late-1800s as an effort to
describe how the human mind performed. The modern era of neural
network research is credited with the work done by Warren McCulloch
and Walter Pitts in 1943. They published "A logical calculus of the ideas
immanent in nervous activity" which was the earliest work in neural
computing. They proposed that the modelling brain could be represented
mathematically. These models made several assumptions about how
neurons worked.

In the late 1940s, Donald Herb made one of the first hypotheses for a
mechanism of neural plasticity (i.e. learning), Hibbing learning. He
presented how learning may take place in a network of perceptrons.
Hebbian learning was considered a 'typical' unsupervised learning rule
and it (and variants of it) was an early model for long-term neural
memory. However, the first significant step of the progression from the
biological neural studies took place in 1950’s when Frank Rosenblatt
introduced the first concrete neural model, the perceptron, which was
capable of learning certain classifications by adjusting connection weights.

In 1960 Widrow & Hoff had developed the least mean square theory of
linear perceptron and Widrow-Hoff learning rule, which was later applied
in the delta rule. It was the first time for real word applications of neural
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network. At first, the use of the Multi-Layer Perceptron (MLP) was
complicated by the lack of a suitable learning algorithm. In 1974, Werbos
introduce a so-called backpropagation algorithm for the three-layered
perceptron network. The application area of the MLP networks remained
rather limited until the breakthrough in 1986 when a general
backpropagation algorithm for a multi-layered perceptron was introduced
by Rummelhart and McClelland.

In the early 1980's, researchers showed renewed interest in neural
networks. Recent work includes multilayer networks, Hopfield network,
Boltzmann machines, competitive learning models, and adaptive
resonance theory models. The ability for bi-directional flow of inputs
between neurons/nodes was produced with the Hopfield network (1982).
Unlike the neurons in MLP, the Hopfield network consists of only one layer
whose neurons are fully connected with each other.

Radial Basis Function (RBF) networks were first introduced by Broomhead
& Lowe in 1988. Although the basic idea of RBF was developed 30 years
ago under the name method of potential function, the work by Broomhead
& Lowe opened a new frontier in the neural network community. A unique
kind of network model is the Self-Organizing Map (SOM) introduced by
Kohonen in 1982. SOM is a certain kind of topological map that organizes
itself based on the input patterns in the training process. The SOM
originated from the Learning Vector Quantization network the underlying
idea of which was also Kohonen's in 1972 [Garson, 1998].

5.6 Top-oil Temperature Prediction with Neural
Networks

First, an efficient network structure related to the investigated
transformer is designed. Fundamentally, there are no fixed rules to follow
for the network design. The core design parameters, which have to be
considered, are network topologies, number of hidden layers, and number
of hidden neurons as well as the training algorithm. The designed network
is then trained using the training data set to compute model weights and
biases. The measured top-oil temperature is applied as a target of the
training process. The network inputs are:
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Last-state of measured top-oil temperature
* Load current

* Ambient temperature

» QOperating states of pumps

= QOperating states of fans

After the training process, the top-oil temperature is calculated with the
test data set applied in the designed network. The set of investigated data
used for the training process and for the testing process (top-oil
temperature calculation) can be seen from Table 5.1.

Training data set Test data set
Trl January 2004 - May 2004 June 2004 - December 2004
Tr2 January 2003 - May 2003 June 2003 - December 2003
Tr3 | January 2003 - December 2003 | January 2004 - December 2004

Table 5.1  Set of investigated data

5.6.1 Software Development

A network design program is developed for Feed-forward and Elman
Recurrent network in MATLAB using the Neural Network Toolbox
[Demuth, 1992]. Function newff is used to create a Feed-forward network
and function newelm is used for an Elman Recurrent network. The
numbers of hidden neurons are varied from 1 to 20 neurons and the
networks are trained with 12 training algorithms. Consequently, 240
network structures with five inputs and one target output are examined.
Results show that the three-backpropagation training algorithms:
Lavenberg-Marquardt, Scaled conjugate gradient backpropagation, and
Automated Bayesian Regularization achieve better performance than the
others do. Therefore, these three training algorithm are chosen for the
discussion.

The available training functions may be found in Appendix C. The
maximum number of training epochs is set to be 100. An epoch is each
time when the training data sets are presented to the model between
updates of neural weights [Garson, 1998]. Training stops mostly when the
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maximum number of epochs is reached or the performance has been
minimized according to the goal. There are two training performance
functions available from MATLAB; Performance function with SSE (sum
squared errors) and Performance function with MSE (mean squared
errors) obtained by dividing the SSE by the number of observations.

In the top-oil temperature calculation process, the designed neural
network structure is interpreted into a mathematical model. Weights and
biases obtained from the training process are transformed to be the
coefficients of the model. The deviation between the measured and
calculated temperature is then determined. Results from the network
design program show the number of performed epochs, training time in
seconds, and average top-oil temperature deviation from the training and
testing process. The results are obtained corresponding to the number of
hidden neurons, varied from 1 to 20 neurons, and the 16 different training
functions. The performance of the network is defined by the average
temperature deviation. The 20 best performance network structures are
also presented with the monthly results and the weights and biases. In
addition, the average deviation for each month and the average deviation
of the whole data set for the 20 best performance models are also
determined.

5.6.2 Mathematical Models

In general, each neuron in the hidden layer is transformed with a
nonlinear transfer function, while in the output layer, the transfer function
may be either nonlinear (a nonlinear-nonlinear network) or linear (a
nonlinear-linear network). In this work, the Sigmoid nonlinear function
(logsig) is applied as the transfer function for the hidden layer, which
limits the outputs of the layer with small range. Since the calculated top-oil
temperature can take values from a continuous set, thus, the linear
function (purelin) is applied as the transfer function for the output layer.

Sigmoid functions are the most popular type of activation function used in
many neural networks. They are continuous, differentiable everywhere
and rotationally symmetric about some point. They approach their
saturation values asymptotically. Logsig is one of the Sigmoid functions
that may take any value between the limits of the output between 0 and 1.
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The mathematical forms of the logsig and purelin function may be defined
as in Eq. (5.4) and (5.5), respectively. The diagrams of both functions are

shown in Figure 5.3 [Demuth, 1992].

filsg)=— (54)

l+e %k

Where fx is a transfer function of input sx.
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Figure 5.3  Transfer functions
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Feed-forward Network

The one-hidden layer and the two-hidden layer feed-forward structures
are illustrated in Figure 5.4 and Figure 5.5, respectively. The inputs i; - is
are the 5 measured input values, w is the weight for the corresponding
neurons, b is the bias and y is the output for the network. The input
delivered to the transfer function consists of the weight vector multiplied
by the input vector summed with the bias.

Input Hidden layer Output

S 7 y

Figure 5.4  One hidden layer feed-forward structure with weights and biases

The output y can be calculated as
y =logsig\l - W; + By, )} W, + By (5.6)

where: Input: I = (iy, iz, i3, 4, I5)

Bias of hidden layer: By = (bin...bun)

Bias of output layer: Bo= b1,

Weights of output layer: W, = (W1,0,..., Wn,0)T
Weights of hidden layer:

Wi W20 - Wini

Woti W22i = W2ni

Ws1i W52 7 Wsni
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Figure 5.5 Two hidden layer feed-forward structure with weights and biases

The output y of the two-hidden layer network may be calculated as
y= logsig(logsig(] Wi + By, ) Wy, +Bjy ) W, +B, (5.7)

where: Input: I = (i3, iz, i3, 14, i5)

Bias of first hidden layer: Bns = (bin1... bnn1)
Bias of second hidden layer: Bnz = (binz... bnnz)
Bias of output layer: B, = b1,

Weights of output layer: W, = (W1,10, ..., Wn10)T
Weights of the first hidden layer:

(WLl W20 . Wini ]
W, = Wali W22i = W2ni
(WSl W52i T Wsoni |

Weights of the second hidden layer:

(WILlh W12k e Winh |

Woilh W = W2 nh
Wh _ , 2,2h /]

| Wslh W52n T Wsah
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Elman Recurrent Network

In the Elman network (Figure 5.6), the previous outputs of the first layer
multiplied by the weight matrix are added to the input to the transfer
function. The values stored at the previous time step is used to compute
the values at the current time step. One requirement in the Elman network
is that there has to be enough neurons in the hidden layer. More hidden
neurons are needed as the overall input-output function for which a fit is
required increases in complexity.

Input Hidden layer Output

=== oo mmmSm———- [ il |
: | : a(k-1) ; : !
i i | W, ' logsig function E ! i
LW, i : : |
I 1 : 1
| " 1 linear function |
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Figure 5.6  Elman network structure with weights and biases

The output y may be calculated by Eq. (5.8), Eq. (5.9) with weights of
recurrent connection: Wy = (Wir...War).

a(k) = logsig(]-Wl- +a(k—1)-W,, +Bh) (5.8)
a(k-1) = logsig(]-Wl- +a(k—2)-W,, +Bh) (5.9)

y=alk)w, +B, (5.10)
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5.7 Calculation Results and Discussion

In this chapter, the performance of top-oil calculation from one-hidden
layer and two-hidden layer feed-forward networks and recurrent network
with various numbers of neurons are investigated for long-term operation
with varying load current and ambient temperature.

5.7.1  Training Time

The speed of the network training process may range from a few seconds
to many hours, depending on factors such as the number of weights in the
network, the number of training sets considered and the setting of various
learning algorithm parameters. As seen from Figure 5.7, the Levenberg-
Marquardt training algorithm shows the shortest training time for the
investigated transformers and the Bayesian Regularization presents the
longest training time. The training time is proportional to the number of
neurons in the hidden layer and to the number of data points.

Although ultimately the training time does not affect the monitoring
system, since training time of the Bayesian Regularization can be up to 20
minutes, it is important that such times would be acceptable for an
industrial situation.

5.7.2 Learning Algorithms and Number of Neurons

Figure 5.8 shows a comparison of the average top-oil temperature
deviations from one-hidden layer feed-forward networks. The number of
hidden neurons varies from 1 to 20 neurons. The networks are trained
with three training algorithms as mentioned previously.

It may be seen that for all transformers, on average, the Bayesian
regularization-training algorithm shows better performance than the
other training algorithms with average deviations less than 6 K. The
Levenberg-Marquardt-training algorithm shows a deviation higher than
10 K in some network structures. Furthermore, good performance in top-
oil temperature calculation may also be found in all models with a small
number of neurons. An average temperature deviation between the
measured and the calculated top-oil temperature less than 2 K is achieved.
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The best performance models for each transformer are shown with their
average temperature deviations in Table 5.2. The temperature deviations
are in the range of 1.4 - 1.9 K.

Number of neurons Training function Deviation [K]
Trl 8 Bayesian Regularization 1.9
Tr2 10 Bayesian Regularization 1.4
Tr3 5 Bayesian Regularization 1.5

Table 5.2  Results from the best performance network structures

The worst results for each transformer may be seen from the Table 5.3.
The average temperature deviations are rather high and ranged from 23 K
to 73 K. The results are all from Levenberg-Marquardt-training algorithm.
These worst results may also be found in all models with small (6) or large
(16) number of neurons.

Number of neurons Training function Deviation [K]
Trl 7 Levenberg-Marquardt 73.3
Tr2 16 Levenberg-Marquardt 23.7
Tr3 6 Levenberg-Marquardt 94.1

Table 5.3  Results from the worst performance network structures

The implication for the monitoring system implementation is that a lower
number of neurons results in a less complicated system, which generally
can be considered advantageous. Therefore, the smallest acceptable
number of neurons should be considered during the network design
process. Different transformers require their own individually designed
network.
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5.7.3 Number of Hidden Layers

In this section the influence of the number of hidden layers on the model
performance is observed. Because of the preferential performance
described in the previous section, the Bayesian Regularization is further
applied as the training algorithm for the investigation with two-hidden
layer Feed-forward networks. The Sigmoid function is applied as the
transfer function in both the first and second hidden layer. The number of
hidden neurons is varied from 1 to 10 in both hidden layers. Consequently,
99 different network structures are investigated. The linear transfer
function is applied in the output layer.

Figure 5.9 shows various average temperature deviations calculated by
two-hidden layer networks with different numbers of neurons. The
numbers in the first and second position of the network structure labels
show the number of neurons in the first hidden layer and the second layer
respectively. The results do not show any clear relation between the
number of hidden neurons and the performance of the network. They are
in fact seemingly random results. The lower temperature deviations are
found for networks with a small number of hidden neurons, both in the
first hidden layer and second hidden layer.

The models with the lowest temperature deviation are presented in Table
5.4. Though the two-hidden layer network has a more complex structure
than the one-hidden layer network, results from all transformers show
that its performance is not better than the performance from the one-
hidden layer network. The temperature deviations are in the range 1.5 -
1.7 K. The models with the worst performance are presented in Table 5.5.
The temperature deviation is shown to be in range 10 - 35 K.

Number of hidden neurons

Deviation [K]
First hidden layer | Second hidden layer

Trl 5 3 1.9
Tr2 1 9 1.5
Tr3 3 8 1.7

Table 5.4  Best performance results of two-layer feed-forward structures
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Number of hidden neurons Deviation [K]
First hidden layer | Second hidden layer
Trl 6 2 21.9
Tr2 6 3 10.5
Tr3 10 2 35.0

Table 5.5  Worst performance results of two-layer feed-forward structures

5.7.4 Performance of ElIman Recurrent Neural Network

The Elman Recurrent network has a complex structure, which affects the
calculating process. The training process of the Elman Recurrent network
requires much longer times than the training process of the Feed-forward
network. The investigation involving Tr3 with Elman Recurrent network
(with the number of hidden neurons varied from 1 to 20 neurons and
training with only one training function) needed over 3 hours, however
the computer was found to hang before the calculation was complete.
Therefore, in this section, only Trl and Tr2 are examined with the
Bayesian Regularization and the Scaled Conjugate Gradient training
algorithm.

Figure 5.10 shows how the temperature deviation for Tr1 and Tr2 varies
according to the number of hidden neurons. Bayesian Regularization
learning algorithm shows a better performance than the Scaled
Conjugated Gradient. The lower temperature deviations may be also found
in the small number of hidden neurons. The best performance results
with each transformer can be seen from the temperature deviation results
in Table 5.6. The average temperature deviations for both network
topologies are found to be lower than 2 K for both Tr1l and Tr2. The
deviations are in the same range as the deviations obtained from the Feed-
forward network models.

Number of neurons Training function Deviation [K]
Trl 20 Bayesian Regularization 1.9
Tr2 16 Bayesian Regularization 1.3

Table 5.6  Results from the best performance models from Elman network
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According to the training time and the results of top-oil calculation, it may
be said in conclusion that the Feed-forward network is more applicable for
the top-oil prediction than the Elman Recurrent network. Therefore, in the
next chapter, in which the applications of top-oil temperature prediction
are investigated, the Feed-forward network type is applied in the neural

network models.
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Figure 5.10 Temperature deviations compared for different training algorithms
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6 Application of Top-oil Temperature Prediction

In order to apply the appropriate top-oil temperature model in the online
monitoring system, some further conditions must be examined. In this
chapter, first, the selection of the models and the performance of the
chosen models under varied load and ambient temperature are presented.
Later, the application of these top-oil temperature models in detecting
malfunction of the cooling system is investigated.

6.1 Performance Comparison between the Physical
and the Neural Network Top-oil Models

Table 6.1 presents the average temperature deviations between measured
and calculated top-oil temperature from the best performance physical
model (Model B) and the neural network models (Feed-forward networks)
obtained from Chapter 3 and 4. They are trained by the Bayesian
regularization-training algorithm. The networks have one hidden layer
with 8 hidden neurons, 10 hidden neurons and 5 hidden neurons for Tr1,
Tr2 and Tr3 respectively.

Transformer Average temperature deviation [K]

Physical model | Neural network model

Trl 1.6 1.9
Tr2 1.3 1.4
Tr3 3.3 1.5

Table 6.1  Best performance results of two-layer feed-forward structures

The transformers Trl and Tr2 have constant operating states of the
cooling units. It is found that the results of the physical and the neural
network models are not significantly different. For Tr1l the average
temperature deviation from physical model and from neural network
model is 0.3 K different. For Tr2 the difference between the average
temperature deviations is also small (0.1 K). Transformer Tr3, with the
varying operating states of the cooling units, shows a large difference of
1.8 K between the physical and the neural network model. In conclusion,
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for these types of transformers, the neural network model has an
advantage.
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Network Top-oil Models

In the physical model, different sets of estimated parameters must be
determined for the different operating states of cooling units. Therefore,
sufficient data of all available operating states of cooling units is necessary.
The neural network model is able to accomplish this more easily as the
number of operating state of pumps and fans can be used as input
variables in the model. The accuracy of the neural network depends on the
operating states available during the training process. But even if a
particular state is not available, the neural network will still produce a
result (coefficients) in this case. This is the advantage of the neural
network model compared to the physical model that can only deliver
results of already known states of operation. This explains the
performance advantage shown to be evident for the neural network model
over the physical model.

The monthly results of the temperature deviations between measured and
calculated top-oil temperature from physical and neural networks models
can be seen in Figure 6.1. Trl and Tr2 have the highest temperature
deviation for both models in August and October, respectively. Figure 6.2
and 6.3 show the influence of load factor on the temperature deviations
for Tr1l and Tr2 in this period. It can be seen that the fluctuation of load
factor for Tr2 was quite severe in October. The high temperature deviation
can be seen explicitly during the shutdown state. For Tr3, the temperature
deviations of physical and neural network models for each month are
obviously different. In almost every month, the temperature deviations for
the physical model are higher than 2 K. However, for the neural network
model, the higher temperature deviations appear in winter time.

The weekly results of top-oil temperature course will be compared for the
physical model and neural network model during the fluctuation of the
load factor in October and may be observed from Figure 6.4. It can be seen
that on the 6 October, the measured top-oil temperature of Tr1 is much
lower than the calculated top-oil temperature (around 5 K), both from the
physical model and the neural network model. The measured top-oil
temperature of Tr2 is also much lower than the calculated top-oil
temperature (around 10 K). For Tr3 the fluctuation of calculated top-oil
temperature course obtained from the physical model can be clearly
observed over the period. The temperature course is totally different from
the temperature course obtained from the neural network model and from
the measured top-oil temperature.
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6.2 Reliability of the Model for Different Loading
Conditions

As seen from section 6.1 load variation has an effect on the calculated top-
oil temperature. In order to apply the top-oil temperature model in an
online monitoring system for an operating transformer, this effect must be
considered. In this section, the results of the top-oil temperature
calculation during the sudden load change for Tr2 previously observed
(section 6.1) is considered in particular. The results are calculated using
the one-hidden layer feed-forward network with 10 hidden neurons.

Figure 6.5 shows the load factor and the temperature deviation between
the measured and calculated top-oil temperature in the long-term
observation during 15 - 21 September 2003. The shut-down state of the
transformer (load factor equals 0) leads to a temperature deviation higher
than 4 K. This temperature deviation remains for a certain period after the
shut-down state is over. The time period of the shutdown state, 11:30 to
16:30, is analysed in Figure 6.6. In this period, the measured top-oil
temperature is higher than the calculated top-oil temperature. The
calculated top-oil temperature decreases immediately after shut-down.
The measured top-oil temperature instead continues to increase for 1
hour. Then it starts to decrease too.

The same effect is observed during the change period from the shut-down
state to the normal operating state but is vice versa. The calculated top-oil
temperature increases directly after load is applied. The measured top-oil
temperature instead decreases for another hour until it then starts to
increase.

This physical effect of a delayed temperature change can be improved by
applying an additional coefficient (a time constant) of the load factor in the
model. For an online application the time constant must be determined for
each transformer unit. However, it can be assumed that the here presented
top-oil temperature model from neural network without considering the
time constant is still proper to use in an online monitoring system.
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6.3 Effect of Transient-state of Ambient Temperature

The relation between transient-state of ambient temperature and
temperature deviation is clearly seen in Figure 6.7. The dataset for Tr2
from 01 - 15 June 2003 was examined using a neural network model with
one-hidden layer having 10 neurons trained by the Bayesian
regularization. In this period, the ambient temperature appeared both in
the steady state and in transient-state. It may be noticed that during the
state of sudden drop in the ambient temperature (02 June), the
temperature deviation increases up to 10 K, while the average
temperature deviation of the normal period is not higher than 4 K. Thus, it
may be concluded that the transient states of ambient temperature are
significant for top-oil temperature calculation.
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6.4 Detection of Malfunction of Fans

The task of the cooling system is to transfer the heat which is generated
inside the active parts of the transformer to the ambient surroundings.
Consequently, the top-oil temperature is determined by the operating of
the pumps or fans. The top-oil temperature may be used as a trigger for
the usage of the fans and pumps. The fans are turned on or turned off
when the top-oil temperature exceeds or is below a set value. Usually, to
avoid an excessive starting current of the power supply, only one group of
fans is first turned on, and then a second group is automatically added in a
few seconds later. The operating status of pumps or fans is monitored
online by means of the auxiliary contacts of switching relays.

The failure of pumps or fans is the most frequent failure mode of the
cooling system. Sources of these failures may be from the failure of pumps
or fans themselves or from the electrical supply. The failure of pumps or
fans may be checked by proving that they are on, when they are supposed
to be on, and they are off, when they are supposed to be off. This can be
done by predicting the actual number of operating pumps or fans using the
top-oil temperature model. The calculating process is described in the
following section.

6.4.1 Prediction of Number of Operating Fans

The number of operating fans was predicted for a 600 MVA grid coupling
transformer. The transformer is OFAF-cooled with 6 fans in total. One-
hidden layer Feed-forward neural network model with 10 hidden neurons
was applied for the top-oil temperature calculation. The network was
trained with the Bayesian regularization training function.

For each time interval, the top-oil temperature was calculated with every
number of fans from 1 to 6. The calculation with the least deviation to the
measured top-oil temperature in that time interval determines the best fit
value for the number of operating fans.

Figure 6.8 illustrates the predicted and the monitored number of
operating fans from 06 - 11 January 2004. During changing state a slight
difference between the monitored and the predicted number of operating
fans occurred. The monitored number of operating fans has changed
immediately from 6 down to 4 fans on 09 January 2004. The predicted



81 6 Application of Top-oil Temperature Prediction

number of operating fans has changed from 6 to 5 fans and after 4 hours
from 5 to 4 fans.
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Figure 6.8  Monitored and predicted number of operating fans

The prediction was also performed on Tr3 for a period with quick changes
of the operating state of fans as seen in Figure 6.9. Tr3 has 8 pumps and 8
fans in total. The number of operating pumps was kept constant. There
were 8 datasets with the number of operating fans varying from 1 to 8 for
the top-oil calculation. The neural network model with one-hidden layer
and five hidden neurons was used on the dataset from 03:15 - 07:30 on
the 25 October 2004.

The increasing number of fans over the studied period was predicted well
by the model. Still there is a significant difference between the monitored
and the predicted number of operating fans. Most times the calculation
predicts one more fans operating than is actually measured. As the
deviation is small and with increasing number of fans better predict ion is
obtained, it can be assumed that with further improvement of the model a
satisfactory prediction would be possible.
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Figure 6.9  Monitored and predicted number of operating fans

6.4.2 Correlating the Calculated and the Measured Top-oil
Temperature

An investigation is performed under the circumstances originally
proposed in [Tenbohlen, 2003]. The studied transformer is a
420kV/600MVA grid-coupling transformer with ODAF cooling. The
cooling unit consists of two parts with 3 fans each. Nominal cooling power
is achieved by means of four running fans. The actual thermal resistance
(Rehact) was calculated from the difference between the top-oil
temperature and ambient temperature and the power loss in the
transformer, as can be seen from the following equation.

ﬂTO _"yamb
Py + Py K2

Rth,act = (6 1)

The number of fans in operation has to be taken into account to calculate
the thermal resistance (Ruw) for nominal condition as seen in (6.2).

Renv = Renace X number of fans/4 (6.2)
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The measured top-oil temperature, along with the nominal thermal
resistance and the number of fans, during 07 January - 15 March 2002 are
presented in Figure 6.10.
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Figure 6.10 Abnormal condition of cooling unit detected by increase of thermal
resistance R

After switching on two additional fans on 20 January 2002, a large
increase in Rsv from approximately 35 K/MW to 70 K/MW was
determined during 20 January - 26 February 2002.

The increase in Ray indicates an abnormal condition of the cooling unit. A
local check in the substation revealed that, due to a failure of the power
supply in the cooling system, only three fans were running. This status was
not in accordance with the information of the control system and led to the
large increase of nominal thermal resistance.

This occurrence is examined further in this work. The top-oil temperature
in this period is calculated using neural network model and the
information of number of fans from the monitoring system. Then, it is
compared with the measured top-oil temperature.
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Figure 6.11 Losses of the investigated transformer during the examined period

In order to find a good model, a two-week dataset from normal operation
conditions after the maloperation was used (01 March - 15 March 2002).
In the case of the studied transformer unit, a one hidden layer Feed-
forward network model with 10 hidden neurons trained by Lavenberg-
Marquardt Backpropagation gives the best result for the top-oil
temperature calculation. Weights obtained from the training process are
later applied to the model using the whole dataset (07 January — 15 March
2002). Figure 6.12 shows the measured and the calculated top-oil
temperature for comparison.

The results can be discussed in terms of three periods. The first period is
from 07 - 20 January 2002. For this period the monitoring system predicts
the correct number of 4 operating fans. A small deviation between
measured and calculated top-oil temperature can be observed. The second
period (20 January - 26 February 2002) is the period that the incorrect
number of 6 operating fans is obtained from the monitoring system. For
this period, the predicted top-oil temperature is based on 6 fans operating.
However, the actual number of operating fans is only 3. Consequently, a
large deviation between the measured and the -calculated top-oil
temperature is observed. The last period (27 February - 15 March 2002)
was used for the training process and is therefore very accurate.
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In conclusion, the malfunction of the pumps and fans can be well detected
by comparing the measured top-oil temperature to calculated data from
the neural network model.
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Figure 6.12 Measured and calculated top-oil temperature compared during the
failure period of fans

6.4.3 Online Monitoring Criteria

The results in section 6.4.1 show that it is impossible to check the failure
of cooling units by direct prediction of the number of fans operating.
However, it can be seen from section 6.4.2 that by correlating the
measured and calculated top-oil temperature, the information about the
malfunction of the monitoring system may be examined. Therefore, the
calculated temperature deviation may be used as an alarm criterion of an
online monitoring system.

Figure 6.13 shows the actual and the average top-oil temperature
deviations between the measured and the calculated top-oil temperature
from the investigated period from section 6.4.2. The actual instantaneous
temperature deviation fluctuates and can be up to 6 K in the normal period
and up to 17 K during the failure period. Thus, consideration of the
average temperature deviation is considered necessary. The average
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temperature deviations are determined by filtering of the instantaneous
temperature deviations. The filtering is done in MATLAB using the Signal
Processing Toolbox with the function filtfilt. The number of points per cycle
of the data is set to be 300. After the filtering of temperature deviation, it is
obvious that the average deviation during the failure period increases by
up to 12 K. However, during the normal period, the temperature deviation
is less than 2 K. After the wrong signalling of the number of running fans
on 20 January, the deviation was higher than 4 K. Consequently, a trigger
of the alarm could be set for when the top-oil temperature deviation
between the calculated and the measured temperature is higher than 4 K.
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Figure 6.13 Average and actual temperature deviation during the failure of fans

However, the alarm criterion should be set with consideration of the other
two conditions that have an influence on the top-oil calculation: shutdown
state of the transformer and transient-state of ambient temperature.
These influences must be precisely studied and considered for each
transformer. For example, it is found from the investigation in section 6.2
and 6.3 that the average temperature deviation under the shutdown state
of the transformer and transient-state of ambient temperature also appear
clearly as being higher than 4 K with the time constant of 1 hour. Thus, in
this case the temperature deviation higher than 4 K with the time constant
of 1 hour can be set as an alarm for the monitoring system.



87 6 Application of Top-oil Temperature Prediction

6.5 Implementation of a Neural Network Model in the
Top-oil Temperature Monitoring System

The neural network model must be customised for any power transformer
and weights must be set individually. However, it is recommended to use
feed-forward neural networks with one hidden layer as explained in
section 5.6.1.

In summary, to implement the model in the monitoring system, first, the
model for each transformer must be designed by network design software,
in this case using Matlab®. The data comprising at least one year of
measured top-oil temperature, load current, ambient temperature and
operating number of pumps or fans should be applied. The software will
train different models (with number of hidden neurons varied from 1 to
20 neurons) with 12 different training algorithms. The weight and number
of hidden neurons of these models are obtained. Then, the mathematical
model as described in Eq. (5.6) is applied and the temperature deviation
between measured and calculated top-oil temperature from different
network models is determined. The results from these different models
with their weights, number of hidden neurons and temperature deviations
are then considered and analysed (using Excel).

The model with the lowest temperature deviation will be chosen as the
model for the top-oil temperature calculation. Its weights and number of
hidden neurons will be modified into a mathematical form for calculation
and the model can then be applied in the monitoring system.



7 Monitoring and Diagnosis of On-load Tap
Changers

On-Load Tap-Changers (OLTCs) are part of the voltage regulating systems
in an electrical transmission network. They are connected to the
transformers and are responsible for maintaining the voltage level under
variable loading conditions. By changing a tapping on a winding, the OLTC
allows the turns-ratio of the transformer and thus the level of its output
voltage to vary. The selection of tapping on the transformer winding is
done via the selector switch. Load current is then switched over a set of
contacts by means of the diverter switch. The position of the electric
contact is adjusted by a driving mechanism and a control unit, based on
the comparison of an output voltage and a reference value.

7.1 Tap Changers Characteristics

During the tap changing, the current in a transformer winding is not
allowed to be interrupted and the tap changing must be carried out
without short circuit of two tapping points of the winding. This leads to
the requirement of transition impedance during the transition stage. Such
transition impedance is provided either with a resistor or with an
inductor. The amount of impedance and the method of its connection in
the circuit are determined by the following conflicting requirements: no
excessive voltage fluctuations during the switching cycle and the
circulating current between taps in the transition position.

711 Tap Changers Design Schemes

The tap changer of a transformer should meet the same normal and peak
rating overload conditions as the transformer itself. The design schemes
should consider the following points [Feinberg, 1979]:

* the maximum system voltage;

step voltage and the number of steps;

» the maximum RMS test voltage to earth and across the tapping range;
» the maximum surge voltage to earth and across the tapping range;
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* the maximum power-frequency and surge-test voltage between phases
where applicable;
= current rating, both for normal full-load and peak rating conditions.

Moreover, type tests are necessary to determine the data for a particular
tap changer to ascertain whether it is capable to meet supply authority
specifications while conforming to international and national
requirements.

7.1.2 Switching Principles

Two switching principles have been used for the load transfer in OLTC
diverter switches; the slow-acting reactor and the high-speed resistor
principles. Both principles provide reliable OLTCs for the full range of
OLTCs. The reactor type OLTCs are in separate compartments that are
normally welded to the transformer tank. The use of a reactor is to limit
the circulating current during transition from one tap to the other. These
reactor type OLTCs are now less used in Europe, however, they are still
available and are frequently used in the USA.

The resistor type OLTCs tend to dominate, especially when they come to
HV, HVDC and EHV OLTC transformers [Goosen, 1996]. They are installed
inside the transformer tank. An advantage of this switching method is that
the current interrupted and the re-striking voltage across the contact is in
phase. Nowadays the high-speed resistor OLTC dominates a new
application that allows designs that are more compact and the fast
operation that the arc persists only about half a cycle. Therefore, contact
erosion and oil contamination can be minimized [Feinberg, 1979].

There are two types of resistor tap changers in common use, as seen from
designs and their switching schematics in Figure 7.1. They are different in
current-transfer switching arrangements. These may be classified as the
pennant switching cycle and the flag switching cycle. The term “pennant”
and “flag” are derived from the appearance of the phasor diagrams that
show the change of output voltage of the transformer in moving from one
tapping to the next.

The pennant-switching-cycle type tap changer uses a selector switch that
combines the functions of tap selection and current transfer. It is used for
regulating transformers with small to medium output rates. Generally, a
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single resistor is applied for giving an asymmetrical switching cycle. In one
direction of movement, a circulating current is passing before the through
current is interrupted. And in the reverse direction, the through current is
broken before a circulating current starts to pass.

The flag-switching-cycle type tap changer uses a tap selector in conjunction
with a separate diverter switch in the separate oil compartment. Two
resistors are applied for giving a symmetrical switching. With this
sequence, the through current is broken by the main contact before a
circulating current starts to pass.

Figure 7.1 Tap-change type: (left) pennant-switching cycle;
(right) flag-switching cycle
(Photos from Maschinenfabrik Reinhausen GmbH)

The switching sequences of a tap changer operation of a selector switching
type can be seen from Figure 7.2 [Kramer, 2000]. The fixed tapping
contacts are spaced round the periphery of a circle and are indexed by a
single rotary contact. Its insulated support arm also carries two transition
resistor contacts.

Figure 7.3 shows the switching sequences of the tap selector-diverter
switching type. The tap selector operation from Figure 7.3a to Figure 7.3c
is a slow motion sequence actuated by the motor drive mechanism (3 to
10 seconds). The diverter switch operation from Figure 7.3d to Figure 7.3i
is carried out in a rapid motion actuated by the spring loaded mechanism
(40 to 60 milliseconds).
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Figure 7.3  Principle switching sequence of a tap selector-diverter switch type
(a-c: tap selector operation, d-i : diverter switch sequence)
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7.1.3 Motor Drive Mechanisms

Either three-phase or single-phase induction motors may be used in the
on-load tap changer drive units. Most of them are the capacitor start and
run types. This motor drive mechanism must be capable of operating in
both directions of rotation to satisfy the normal functioning conditions of
the tap changer. The essential requirements for the control of these
motors are the initiating components such as push buttons or switches
and the maintaining contacts in the auxiliary equipment in order to make
certain that a full tap-change sequence is completed once initiated. The
limit switches are provided to prevent overrun.

Details of the motor drive mechanism are usually described in the
manufacturer’s maintenance manual or specific drawing. It is also usual
for the motor drive mechanism to include the facility to allow the unit to
be operated manually. If this facility is provided, it is essential that the
electrical system is isolated automatically either before or at that time that
the handle is inserted.

7.2 Failure Mechanisms in On-load Tap Changers

International publications [CIGRE, 1983] show that the on-load tap
changers cause 40% of all transformer failures strongly affecting the
quality of the energy delivered to the final consumer. In general, OLTC
failures are categorized as electrical, mechanical and thermal faults. The
major serious faults are mechanical faults. They appear from ageing,
inadequate design, and missing quality control during manufacture or site
erection. They may lead to loss of synchronization within the selector
switch or between selector and diverter switch of the same phase. They
may also lead to slow or incomplete diverter operation faults. The most
frequent mechanical failures are contact problems and driving mechanism
problems. The problems with contacts may be loosening on moving
contacts from incorrect maintenance or reassembly, excessive wear,
contact cracks on fixed contacts or moving contacts, erosion or weak
spring wear from aged/deteriorated components. The driving mechanism
problems may be drive mechanism malfunction, loose shafts or damaged
shafts. They may cause slow or incomplete diverter operation faults.
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Mechanical faults may lead to electrical faults such as burning of contacts
or transition resistors and insulation breakdowns. The mechanical and
electrical events can cause contacts erosion and the degradation of the
dielectric oil strength. The electrical arcs (discharges) burn the oil causing
carbon built-up. The contact’s mechanical friction releases metal particles
in the oil. A high concentration of carbon and metal particles change the
dielectric oil characteristics leading to more intense electric discharges, in
consequence, on extreme causes a transformer failure. The process of
contacts erosion and oil degradation is described in Figure 7.4 [Simas F.,
2005].

— Contacts Erosion
Friction |7 (releasing metal particles)
Tap-change

Process / \
Arcing b Carbon R Degradation of , Longer R Transformer
Build-up | | Dielectric Oil | | Arcing Time Failure

Figure 7.4  Contacts erosion and oil degradation process

7.3 Maintenance Strategy

At present, preventive maintenance is normally performed along with
periodic inspection of the OLTCs and replacement of parts if necessary.
The regularity of the maintenance work depends on the number of
operations and total service time or when some kind of failure occurs.
Periodical maintenance is suggested according to the number of
operations, between 20,000 and 100,000, or after 4 to 7 service years,
whichever comes first.

Generally, the information of the diverter switch unit obtained during the
regular inspections includes oil quality (humidity and electric strength),
oil leaks, and verification of transition resistors, contacts alignment and
motor drive mechanism. The electrical contacts are examined for
excessive wear or arcing. Normally, contacts are replaced before their
wear limits just for safety reason. Furthermore, inspections are also
carried out if the OLTCs were overstressed. For the in-tank tap changer,
inspection is only possible after lifting the complete active part of the
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transformer out of the tank. This maintenance procedure is a major
expenditure both in time and in materials consuming, as it requires
disconnection and substitution of the equipment. The selector switch is
not regularly inspected. In some cases, if the operating numbers exceed
1,000,000 operations the manufacturer has to be contacted concerning a
tap selector inspection.

Old designs of tap changers still present a significant problem for users
since some have been in service for over thirty years and most are
obsolete. This leads to the developments in alternative tap-changing
technologies, the online condition monitoring systems and the possibility
to change from periodic maintenance to condition-based maintenance.
Today, tap changer status monitoring is becoming attractive to increase
reliability and reduce the cost of maintenance by eliminating selector
internal inspections and unacceptable deviations in diverter operation
[Kramer 1996].

7.4 Online Monitoring Parameters

The most important parameters for measurement are those that detect
mechanism movement, measure diverter timing and transition resistor
current. Usual general diagnostic methods (analysis of transformer oil,
measurement of terminal resistance, temperature measurement of the
diverter switch oil, and a contact wear model in combination with
measurement of load current) may not be able to detect such mechanical
nature defects. The measurement and evaluation of mechanical
parameters, i.e. forces, torques, switching supervision, velocities,
accelerations within contact system and motor drive should also be
considered.

7.41 Contact Resistance of Diverter Switch

Normally, the resistance between moving and fixed contacts is of the order
of micro-ohms. Contacts with solid carbon layers have resistance values in
milliohms. As the winding resistance of power transformers lies within a
range of several hundred milliohms and a few ohms, it is necessary that
the least possible number of winding turns is included in the measuring
circuit in order to determine the contact resistance accurately.
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One proposition for the resistance measurement is presented in [Kriiger,
2007]. The winding resistance is measured for checking the loose
connections, broken strands and high contact resistance in tap changers. A
winding resistance test is carried out by injecting a DC current of
approximately 1% of the rated current and measuring the DC voltage drop
across the winding after the measurement has stabilized. By comparing
the static winding resistance for each tap against the values measured at
commissioning, the state of the selector as well as diverter contacts can be
analyzed. Additionally, the dynamic resistance measurement enables an
analysis of the transient switching operation of the diverter switch. The
dynamic winding resistance test from one tap to the next yields a ripple
and slope measurement, which will highlight any unwanted interruptions
in the switching process of one tap to the next.

7.4.2 Drive Torque Measurement

A tap changer consists essentially of gears, insulated shafts and mounts
fixtures as well as contacts and terminal surfaces. Mechanical malfunctions
of on-load tap changers present untypical drive torque behaviours and
mechanical vibrations, later accompanied by electrical failures. Mechanical
and control problems can be detected from the additional friction, contact
binding, extended changer operation times and drive motor torque or
motor current information.

During the switching cycle of an OLTC, the required mechanical torque
[Nm] increases considerably, depending on the action performed. The
phenomena may be measured on the shaft of the driving motor by torque
indicators [Kramer 1996]. However, this is not possible for OLTCs in
service. The only way to measure the variable need for mechanical energy
during a switching cycle is to measure the voltage and current from the
electrical supply side. The active power of a motor is nearly proportional
to the torque of the output shaft. However, the driving motor is not always
a three-phase type; single-phase types and DC-motors are also used. From
the comparison of torque and active power curve, it may be concluded that
the detection of the active power of the motor drive unit may be used
principally to monitor the OLTC torque.

The drive torque includes important mechanical forces of the selector and
diverter switch. The mechanical forces at the selector switch come
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especially from the contact springs and contact friction. The mechanical
forces at the diverter switch come from the energy stored in the load
switch. An evaluation of calculable value of torque dynamics from the
torque-time curve (average value and average slope steepness) could give
information about the adjustment of the selector contact and the condition
of the contact surface.

Research has shown that when the contact springs are aged or broken, the
torque dynamics, average value and average slope steepness decrease
during the opening and closing of the contacts. When damage to contact
surfaces occurs, during the opening and closing of the contacts, the torque
dynamics, average value and average slope steepness increase. The load
switching initiation also causes a large torque peak. The height of this peak
depends on the switch adjustment and the condition of the energy store in
the load switch. Generally, excessive values and oscillations in the torque-
time function are caused by damaged motor drive elements, i.e. bearings
and gearwheels [Marwitz 1992].

Initial current inrush and starting torque are related to mechanical static
friction and backlash in the linkages. The monitoring of this peak value
during the first fifty milliseconds of the event provides a useful diagnostic.
Monitoring of the average value of running current or torque after initial
inrush/start-up provides a measure of dynamic friction [Chu, 2000].

Motor current measurement is most effective when the motor directly
drives the mechanical linkages. Most common tap changer designs employ
a motor to charge a spring. The spring supplies energy to move the
linkages during a tap change. In this case, motor current measurement is
not very effective at detecting mechanical problems. Torque or force
sensors measuring drive force will yield the desired information. The area
under the motor current curve is called the motor index and is usually
given in ampere-cycles, based on the power frequency. A similar
parameter based on torque may be used. This parameter characterizes the
initial inrush, average running conditions, and total running time. Not all
types of tap changer operations have similar index values. Some
monitoring characteristic parameters such as time of inrush current, total
switching time and power consumption index for the mechanical
conditions are also proposed in [Tenbohlen, 2003].
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7.4.3 Selector Switch Monitoring

Before the diverter switch switches the current on to the selector switch, a
monitoring system should be able to detect that the selector contacts are
in the right positions. This can be done by monitoring drive shafts of the
moving contact. These drive shafts generally are core of the tap selector
tank and drive all three phases of the selector/change-over moving-
contact arms. By monitoring the angular position of the moving contact
drive shafts of the selector switch, an accurate indication of the position of
the moving contacts may be obtained. [Kay 1997].

7.4.4 Temperature Difference between the Main Tank and
Load Tap Changer Compartment

A variety of diagnostic algorithms for on-load tap changers may be
implemented using temperature data. In the earlier days, temperature rise
of oil in selector and diverter compartments may be used to detect
overheating of fixed or moving switching contacts. When the tap changer
is in a compartment separate from the main tank, it naturally results in
larger temperature differences between main tank and the load tap
changer compartment. Thus, the monitoring of this temperature difference
is most effective for this external tap changer designs [Chu, 2000].

However, smaller differences are expected on tap changers that are
physically located inside the main tank. This method is most suited for
detecting coking contacts and problems of thermal/dielectric nature such
as excessive losses caused by bad contacts. Under normal operating
conditions, the main tank temperature will be higher than the temperature
of the tap changer compartment. On the other hand, tap changer
temperature may exceed main tank temperature periodically under
normal conditions. Hourly variations in electrical load, weather conditions,
odd tap position operation at low load for reactance type tap changers,
and cooling bank activation may result in main tank temperatures below
that of the tap changer. Reliable diagnostic algorithms must account for
these normal variations in some way [Reason, 1993].
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7.4.5 Dissolved Gas Analysis

Dissolved Gas-In-0il monitoring has been recognized as an important tool
for detecting incipient-fault conditions in the main tanks of transformers
and is being applied to the OLTCs. The dissolved Gas-In-0il analysis for
OLTC has to be considered separately for the selector switch and the
diverter switch. The oil of the selector switch is the same oil as the oil in
the main tank. Dissolved gases in the oil in the main tank are the result of
discharges or heating.

The oil of the diverter switch is in a separate enclosed compartment. Thus,
the interpretation of gases in the diverter switch compartment is different
from that of gases in the main tank of the power transformer. The aim of
the interpretation is to distinguish between normal gassing behaviour and
abnormal behaviour, which may caused by be excessive contact wear. In
the diverter switch, localized overheating of conductors and surrounding
insulation may lead to carbonization and byproduct polymeric films
forming on conductors, which create a thermal runaway condition.
Carbonization and polymeric films increase the surface resistance of the
contacts, thereby causing increased heating and further byproduct
formation and accumulation, which causes more heating and eventually
leads to failure unless the cycle is interrupted by maintenance. This
behaviour involves a special problem of OLTCs named “coking”, which
comes essentially from carbonized oil in the diverter and may be detected
by observing the generation of hydrocarbon gases such as methane (CH4),
ethane (C:He), ethylene (C2H4), and acetylene (C:H:). The correlation
between dissolved gases and certain types of faults is still in the early
stages of determination and will depend on the design and material used
for the tap changer. Some research has introduced the artificial
intelligence (AI) method for detecting OLTC “coking” problems [Wang?,
2000].

However, in practical terms, arcs occur during the normal switching of
diverter switches. These arcs dissolve gas in the oil of the diverter switch.
Thus, it is complicated to distinguish between normal and the above
mentioned abnormal gassing behaviour in the diverter switch. At present
the dissolved gas analysis for the diverter switch is not sufficiently
meaningful.
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Vibration Technique

Vibration analysis is a non-invasive and relatively inexpensive monitoring
technique. It has been successfully applied in many industrial applications,
mainly aeronautics and manufacturing. In the field of electrical equipment,
it has been applied in circuit breakers by numerous investigators
[Demjanenko et al, 1992], [Runde et al, 1992].

8.1 State of the Art

Vibration monitoring for tap changers considering various types of
sensors and acquisition units has been a topic of investigation over the last
20 years. A method of measurement and evaluation of mechanical
vibrations by means of acceleration sensors was presented by Marwitz
[Marwitz, 1992]. The switching vibration signals along with the contact
oscillogram were also shown in Marwitz’s work. This evaluation of the
acceleration is not a suitable method for transformer monitoring due to
the disturbances affecting the measuring (background noises, arc noises
from the load switching etc.).

Subsequently, an approach using online acoustic emission monitoring
equipment has been proposed [Richardson, 1998]. An amplified vibration
signal is fed to an envelope detector, which is used to perform a data
reduction technique to produce a time envelope. A processor is used to
give an alarm, warning or an output display. The occurrence of acoustic
bursts is mentioned as the key to the tap changer’s status.

Some research has shown that normal, detrimental and faulty behaviours
such as prolonged characteristic times, contact bounces, worn contacts
and loose shafts may be distinguished by acoustic diagnosis [Bengstsson T,
1996]. Consequently, there has also been an attempt to evaluate acoustic
signals. Two methods for evaluating faults situations have been developed
[Wright, 1997]. The first method was Automatic Timing (AT), where the
significant events in the vibration signature are identified and timed
automatically. The second method is Resolution Ratio (RR), where changes
in the response of these significant events provided information regarding
cracked, damaged or worn components. Moreover, some acoustic
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emission parameters like accumulated energy under normal conditions
and with defect simulations of the tap changer have been presented
[Trindade, 2005].

The feature map method is also one of the methods for long term
continuous monitoring [Kang, 2000]2. The continuous monitoring can be
achieved by correlating induced faults on a real tap-changer with changes
in the vibration signatures. The corresponding location of the signature on
the map gives indication of actual condition of the equipment. By applying
a set of signatures corresponding to both healthy and faulty conditions to
obtain the trained map, the trajectories showing the transition of
equipment from healthy to unhealthy conditions can be visualized.

More recently [Simas, 2005] has developed a data-conditioning unit to
collect the vibration signal during a tap change. The recorded data has
been processed using a Genetic Algorithm (GA) and a Recursive Least
Square (RLS) filter. A system using the method of envelope extraction by
the Hilbert convolution procedure with adaptive parameters has also been
proposed [Foata, 2000].

8.2 Transition Sequence Investigation

In this work, the studies of the transition process are conducted during no-
load situation on a tap changer without insulating oil in the laboratory.
The tap changer is a diverter-switch type with series voltage up to 220 KV,
current intensity from 400 to 1000 A and mounted in the laboratory for
experimental purposes (Figure 8.1). During the investigations, it was
manually operated from tap 1 to tap 19. The technical details of contacts in
the diverter switches depend on the type of tap changer.

Figure 8.2 shows a photograph of the contacts in the studied diverter
switch. The contacts are held in place by extension springs. During the tap-
change process, the tap selection is firstly done via the selector switch.
Then the diverter switch operates in order to transfer the current from
one tap position to another tap position. The left set and the right set of
contacts in the diverter switch represent the odd-tap or even-tap position
of the tap changer. Thus, the set of contacts at odd-tap position and the set
of contacts at even-tap position are always separately considered in the
investigation of the tap changer.
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Figure 8.1 Investigated tap changer in laboratory: (a) photo; (b) schematic

The diverter switch is normally equipped with transition resistors to avoid
short-circuit under operation; the set of contacts is therefore composed of
main contacts (M) and transition contacts (T). The sequence of the
transition process of the type of tap-changer from one tap position (A) to
another tap position (B) may be concluded in the following five phases. In
Figure 8.1b, MA and TA represent the main and transition contacts at
position A, respectively. MB and TB represent the main and transition
contacts at position B, respectively.

Phase 1: MA and TA are closed (load current via MA)

Phase 2: TA is still closed; MA is being opened (load current via TA)
Phase 3: TA is still closed; TB is being closed (load current via TA)
Phase 4: TA is being opened; TB is still closed (load current via TB)
Phase 5: TB is still closed; MB is being closed (load current via MB)
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Main fixed contacts Main moving contacts
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Fixed transition contacts Moving transition contacts

Figure 8.2  One-phase contact set of a diverter switch

In this work, the switching period of the transition process was studied
from the sequence of the acoustic signal. The piezoelectric sensor type
EPZ-27MS44 from EKULIT was fixed onto the top of the tap changer. In
order to observe the phase of tap changer process, different resistors were
additionally connected at the end of each contact set in the diverter switch
(Figure 8.3). By applying a voltage across the contacts and additional
resistors, different current levels were detected during different phases of
the contact movement in order to get information about the current phase
of the tap changing process.
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MB R, Tap change process
= measuring circuit

The voltage signal measured during the five-phase transition process and
the complete vibration signatures captured by an oscilloscope are shown
in Figure 8.4. The figures show the signals appear like a burst with a series
of different peaks. The signatures are horizontal symmetric. They were
captured during the switching upwards from tap 2 to tap 3 (odd-tap
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position) and from tap 9 to tap 10 (even-tap position). Different current
levels can be seen from these transition phases. Thus, Number 1 - Number
5 in the figures indicate the five phases of the transition process as
described above. Furthermore, the switching period of each transition
phase may be determined from the interval between doted lines. Figure
8.4a shows the tap transfer process of the contacts (TA and MA) from odd-
tap position to even-tap position (TB and MB). It begins with phase 1
where MA and TA are closed and the load current is transferred via MA.
The process ends with the closing of TB and MB in phase 5. Figure 8.4b
presents the contact moving process from even-tap position (TB and MB)
to odd-tap position (TA and MA). It begins with phase 5 where TB and MB
are closed and the load current is transferred via MB.

Both signatures from the operating of odd-tap position and even-tap
position show behaviour of a similar manner. Weak acoustic signals
(noise) are obtained during the first phase before the contacts begin to
move. This period takes around 60-65 ms. In phase 2, the transition
contact is still closed and the main is being opened and no acoustic signal
appears for a period of 40 ms. The higher amplitude signal is found during
phase 3. This is the period that the transition contact is being closed. This
phase is the shortest duration (around 16-20 ms). In phase 4, the period
during which the transition contact is being opened and the main contact
is still closed, the low amplitude signature can be detected. The highest
and largest signature can be seen during phase 5, which is when the main
contact is being closed. This takes a longer time than other phases (longer
than 100 ms).

It is observed that the vibration signatures with the highest amplitude are
found to mostly occur during the contact closing process. This is the
period from the beginning of closing of the transition contact (phase 3)
until the beginning of closing of the main contact (phase 5). The time
interval between the beginnings of these two phases is visible as around
50 ms for odd-tap and 48 ms for even-tap. It is assumed that this closing
time will be different when the tap changer is not in the normal condition.
However, in practice, it is difficult to measure the time between the
beginning of phase 3 and the beginning of phase 5. It is more feasible to
measure the time between the first two highest peaks. This period is
defined in this work as the switching characteristic time At (see Figure 8.4)
and is used further as the monitoring criteria.
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Figure 8.4  Vibration Signatures during tap-change in normal condition:

(a) at odd-tap position; (b) at even-tap position
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8.3 Simulation of Defects in Laboratory

In this section, the change of vibration signatures occurring with two types
of defect in the diverter switch is studied. The characteristic time defined
in the last section is observed and compared with that obtained in the
normal condition. Figure 8.4 shows that under the normal condition of
operation, there is no significant difference between the signals record
during the switching of odd-tap position and even-tap position. Thus, in
this section all simulations were done at the switching contact of odd-tap
position.

The simulated defects were in the form of barriers between the contacts
and the loss of main moving contacts of all three poles. Two different
barrier types were investigated. The barriers were placed between the
fixed and the moving contacts along the main and transition contacts. The
first barrier (Figure 8.5a) was a plastic plate of 2 mm thickness. It covered
all three poles of the diverter switch. The second barrier was a copper rod
with a diameter of 5 mm (Figure 8.5b) which was placed only at the first
pole of the diverter switch.

@ o

Figure 8.5

Samples for tap changer
defect investigation

Figure 8.6 show the signals recorded during the simulation of defects. The
phases of the signals are divided into the same series - dotted lines - as
already presented in Figure 8.4a for the vibration signal of the diverter
switch in normal state. For the comparison with the signatures from the
normal status, four main features of the signatures can be focused on:
form, amplitude, switching course and switching characteristic time.
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Figure 8.6  Vibrations signals at odd-tap from the failures investigations:
(a) plastic plate; (b) rod; (c) loss of main moving contacts



8.3 Simulation of Defects in Laboratory 107

In overall, the signature form and the signature course recorded when the
plastic plate obstructed the contacts (Figure 8.6a) is not that different
from the normal condition (Figure 8.4a). The signature is horizontal
symmetric. The highest amplitudes are also found in phase 1 and phase 5.
However, the highest amplitude in phase 3 does not appear directly at the
beginning of the phase. The obstruction of the plastic plate can be assumed
to cause this delay. Furthermore, unlike the normal condition, strong
signals are clearly observed in first phase and second phase. The time
between these strong signals is 88 ms. These noises may be from the
vibration of the plastic plate during the switching process. The
characteristic time between the highest peak in phase 3 and the highest
peak in phase 5 is around 41 ms, which is much less than the characteristic
time from normal condition which is 50 ms (Figure 8.4a).

Figure 8.6b shows the signatures captured during the operation of the tap
changer with the copper rod between the contacts. The signature form and
the signature course are totally different from the normal condition. The
signature is horizontal symmetric and appears with three strong peaks in
phase 2 and phase 4. There is no strong signal in phase 5 at all. It is
impossible to match the closing time steps with those found under the
circumstance of normal operation. When time between the first two
highest peaks in phase 2 is measured, it is found to be around 26 ms,
which is considerably less than the characteristic time in normal
condition.

Figure 8.6c shows the signal recorded when all three poles of the main
moving contacts of the diverter switch are lost. There is a strong noise
with low amplitude in phase 1. A very high peak is observed in the
beginning of phase 5. This is believed to be an acoustic signal from the
stub of the lost contact. The time between the first two highest peaks in
phase 2 and in phase 4 is measured to be 53 ms, which is very close to the
characteristic time for the normal condition. However, the closing time
steps are shifted forward.

In conclusion, it can be said that all signatures recorded from the defect
simulations have differences in time phases. Consequently, the measured
characteristic times under the defect conditions are different from the
measured characteristic time under the normal condition. Thus, the
results in this section show that the characteristic time can be selected as
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for use in online measuring criteria to distinguish between normal
operation and defective operation of a tap changer.

8.4 On-site Investigation

A compact measuring system was developed for online monitoring of the
tap changer. The monitoring concept is to measure the characteristic time
between the two strong peaks of the generated vibration signal. This
measuring concept may be changed depending on the type of tap changer.
A microcontroller is applied in the measuring system for the time
determination. The advantage of using the microcontroller is that it can be
reprogrammed for any future change in the measuring concept.

8.4.1 Measuring System

Figure 8.7 shows the diagram of the compact vibration measuring system.
The vibration signal is detected by a piezoelectric sensor and is amplified
by a preamplifier module. The amplified signal is then send to a measuring
circuit for the characteristic time measurement, which has a
microcontroller as a main component. The output of the measuring circuit
is transferred to a digital to analogue converter. Finally, the characteristic
time as a current output in a range of 4-20 mA is sent to a main online
monitoring system. In case of the high disturbance from noise on site, a
filter may be required. This can be applied as a modification to the
measuring system or as an additional part..

Vibration Sensor and Preamplifier Module

The piezoelectric sensor type EPZ-27MS44 from EKULIT, as shown in
Figure 8.8, is used to detect the vibration signal during the tap-change
process. The sensor resonance frequency gives a bandwidth of about 40
kHz. The sensor uses the phenomenon of piezoelectricity to convert
vibrations to an electrical signal.
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Figure 8.7  Vibration monitoring system

Figure 8.8  Piezoelectric sensor and its schematic diagram

0.53

The weak output signal of the piezoelectric vibration sensor is amplified to
a voltage level within * 5V using a linear inverting operational amplifier
type TS921IN from ST Microelectronics. When no input signal appears, the
positive input of the operational amplifier will be stabilized at 0 V via a
150kQ resistor. The amplifier gain is determined by the ratio of two
resistors (0-100kQ and 2.40k(2), which may be adjusted by the trimmer in
the range of 1 to 42. The maximum gain can be calculated as follows:
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100k _

Gain,, =1+ ~
2.4k€2

(8.1)

The preamplifier module is implemented on a separate board to allow for
future developments. A new preamplifier module can be used as a
replacement when a different sensor is required.

Characteristic Time Measuring Module

The envelope of the vibration signal is determined by considering the RMS
(Root Mean Square) component. The RMS is used to form an averaged
value for the squared signal. Two comparators are used to determine the
time interval between the beginning of the first strong peak and the
beginning of the final strong peak of the RMS signal. This time interval
corresponds to the time during the transition process between the closing
of transition contact and the closing of the main contact of the diverter
switch. Two comparators are used to obtain a reliable measurement of the
time interval. The signals from the comparators are formed by comparing
the voltage of the input RMS signal with a fixed reference voltage. The
microcontroller is used to calculate the time between the two changes in
each comparator output signals. Further details of these system
components can be found from the Appendix D. The circuit diagram of the
measuring module is provided in Appendix E. Moreover, the flow chart of
microcontroller programming can be defined as in Appendix F.

Mechanical Construction

The measurement module is placed in a compact 115 mm long, 65 mm
wide and 55mm high aluminium case, as shown in Figure 8.9. There are
two slots on the main board for two changeable components: the
preamplifier and filter module. A 4-pole connector system is used for the
power supply and signal transmission. The strap tape holds the
piezoelectric sensor with an aluminium plate at the bottom of the case.
The aluminium plate is used for pressing the sensor against the
transformer tank. A thin foam sheet is inserted as insulation between the
aluminium plate and the circuit board. Four strong magnets are built on
the case of the box as well and these used for mounting the case on to the
steel transformer tank. Consequently, the measurement can be made
without screwing the case to the transformer tank.
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Figure 8.9  Measuring Module
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8.4.2 Investigated Tap-changer

The investigations were performed with a tap changer type VACUTAP®
VR 400Y-123/D-10191G with + 9 tap positions from Maschinenfabrik
Reinhausen. The tap changer was installed at a power transformer with a
rated capacity of 40 MVA, ONAN and 107 kV + 16.0% in stages + 9 / 21 kV
yn0d. For the investigation, the tap changer was manually operated during
the no-load situation.

Figure 8.10 shows the position of the compact measuring system placed
on top of the transformer tank next to the transformer cover and near the
drive mechanism of the tap changer. It was ensured that the surface under
the piezoelectric vibration sensor was as smooth and clean as possible for
a good contact with the transformer tank.

Figure 8.10 Measuring case on the investigated Siemens transformer
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8.4.3 Results of the Measurement

The output current during the tap-change process was measured by a
multi-meter. In addition, the vibration signals, the RMS signals and the
signals from the two comparators were observed by an oscilloscope. First,
the trimmer in the preamplifier module was adjusted to improve the
amplitude and the quality of the vibration signals. Then the comparative
values for the two comparators were adjusted to ensure correct
measurement of the desired characteristic time. This was done by
adjusting the resistors at the comparators.

Vibration signals (PREAMP) from the preamplifier module, signals (RMS)
from the RMS module and signals (INTO and INT1) from the comparators
were recorded during the tap-change process from tap 4 to tap 3 (odd-tap
position) and from tap 5 to tap 4 (even-tap position) as shown in Figure
8.11. Slight differences in shape and amplitude of the vibration waveforms
measured at the even-tap and the odd-tap position may be seen. Also, it
may be noticed that the measured characteristic times (At) from odd-tap
and from even-tap position show a significant difference in range.

The characteristic times investigated during the tap-change process from
tap 1 to tap 19 and from tap 19 to tap 1 are depicted in Figure 8.12. The
characteristic time of the switching process is separated into two groups.
The characteristic time of the odd-tap position averages around 124 ms
and the characteristic time of the even-tap position averages around 110
ms.

It can be seen that the measured characteristic times vary within a
tolerance band. The width of this tolerance band can be represented by
the standard deviation, the value of which will depend on the type and
condition of the tap changer. With a number of measurements K and the
average characteristic time (Xt), the standard deviation O: may be
calculated from Eq. (8.2) and Eq. (8.3).

Af = (Atl + Afz + At3 ....... AtK)

K

o =\/2(At—At)2 (8.3)

K-1

(8.2)
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(a)

PREAMP (5V/div)

RMS (0,5V/div)

INTO (5V/div)

INT1 (5V/div)
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(b)

PREAMP (5V/div)

e e

RMS (0,5V/div)

INTO (5V/div)

INT1 (5V/div)
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Figure 8.11 Signals from the measurements:
(a) odd-tap position; (b) even-tap position
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The standard deviation indicates the distribution of the measured data set.
The average characteristic time as well as the minimum, maximum and
standard deviation at odd-tap position and even-tap position from the
measurements described in 8.4.3 can be seen in Table 8.1. The results
show that the characteristic time is repeatable with a low standard
deviation: 0.2 ms for odd-tap position and 0.4 ms for even-tap position
(less than 1). Therefore, the standard deviation of the characteristic time is
considered as part of the criteria for monitoring the tap changer situation.
From the statistic process control (SPC) theory it is known that a process
is under statistical control as long as the new measured value is within 3
standard deviations of the historic process.

0Odd-tap position | Even-tap position
Average value (ms) 124.7 110.0
Minimum value (ms) 124.5 109.1
Maximum value (ms) 124.8 110.1
Standard deviation (ms) 0.22 0.48

Table 8.1

Measured characteristic time
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8.5 Online Monitoring Criteria

To check if the process is under statistical control, a control chart may be
used. Generally, the control chart is used to detect whether a process is
statistically stable. It differentiates between variations: those that are
normally expected of the process due to chance or common causes and
those that change over time due to assignable or special causes [Xie, 2002].

The control chart is a specific kind of run chart that allows significant
change to be differentiated from the natural variability of the
measurement. It consists of:

* points representing a statistic of measurements of a quality
characteristic in samples taken from the process at different times;

= 3 centre line, which is drawn at the value of the mean of the statistic;
= the standard deviation of the statistic;

= upper and lower control limit that indicate the threshold at which the
process output is considered statistically 'unlikely' are drawn typically
at 3 standard errors from the centre line.

The principles behind the application of control charts are based on the
combined use of run charts and hypothesis testing. This method is a
standard procedure in the industry to observe processes continually. The
Shewhart procedure can be used for the hypothesis testing. It provides
eight standard tests for special causes:

* One data point beyond 3 standard deviations from the centre line

» Nine data points in a row beyond one side of the central line

» Six data points in a row steadily increasing or steadily decreasing

» Fourteen data points in a row alternating up and down

= Two out of three data points in a row beyond two standard deviations
» Four out of five data points in a row beyond one standard deviations

» Fifteen data points in a row within the distance of one standard
deviation from the central line

= Eight data points in a row with no data points within the distance of one
standard deviation from the central line
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The control chart can be applied to the online monitoring system and the
eight tests of the Shewhart procedure can be used as the decision criteria.
The control chart from the characteristic time measurement for the odd-
tap position from section 8.4.3 is shown in Figure 8.13. There are 9 points
for the measured data. It shows the mean line (7) at 124.65ms. The upper
limit (UCL) and lower limit (LCL) are set at 124.65 + (3x0.22) ms, which
are 125.31 ms and 123.99 ms, respectively. Figure 8.14 shows the control
chart from even-tap position. The mean is 110ms. The UCL is set at 110 +
(3x0.48), which is 111.44ms. The LCL is set at 110 - (3x0.48), which is
108.56ms.

When the eight tests are considered, both processes seem to be under
control because none of the above cited tests take effect. It should be
mentioned that usually more than 30 samples have to be taken to get
reliable statistical information. The larger the sample size, the smaller is
the standard deviation, as concluded from Eq. 8.3. As soon as one of the
above mentioned tests take effect it may be observed in the monitoring
system of a control room and electronic information may be send to the
operator for example by e-mail or by short message service (SMS). This
enables the operator to react promptly on the unusual process behaviour.

8.6 Implementation of the Tap-changer Acoustic
Monitoring System

In conclusion, for the implementation of this acoustic monitoring system
in the transformer unit, first, the vibration signature has to be recorded
and the RMS signal must be created. Consequently, the range of the
measured characteristic time may be defined by adjusting the compared
values of the two comparators in the tap-change characteristic time
measuring module. In the case of more than two significant pulses of
vibration signals occurring, the program in the microcontroller must be
modified. As the monitoring criterion, the characteristic time can be
investigated by repeating the operation of each tap changer as many times
as possible. When the repeatability of the characteristic time is found,
then, the precise standard deviation can be defined and used to set the
threshold value. Consequently, the monitoring alarm may be set.
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Figure 8.13 Control chart of the odd-tap characteristic time measurement
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An attempt to find suitable on-line monitoring criteria for power
transformers has been presented in this work. From the failure statistics
of power transformer, two main topics: thermal behaviour and tap-
changers have been chosen as the main focus of this work.

Thermal behaviour was studied with regard to top-oil temperature. Some
simple and suitable dynamic top-oil temperature prediction models were
considered for three different cooling types of transformer units (ONAN,
ONAF and ODAF). The simple physical models based on the international
standard and the Multilayer Feed-forward and Recurrent neural network
models have been emphasized.

Last state of measured top-oil temperature, load current, ambient
temperature and operating states of pumps or fans were selected as the
input variables of both physical models and neural network models. The
varying input measured data were provided by an existing online
monitoring system supplied by AREVA Energietechnik GmbH. Some input
constants in the physical models are optimized by the least square
optimization technique.

Four top-oil temperature models were investigated. The first model was
based on IEEE Std. C57.91. Its concept is that the change in top-oil
temperature rise over ambient temperature is caused by the change in
loading condition. The second model was developed by the MIT group. It is
modified from the IEEE top-oil rise temperature by taking accounts of
ambient temperature variations into calculations. The model is based on
and supported by the linear regression technique. The third model was
based on IEC60354 standard. The model considers the top-oil as a mixture
of various oil flows, which have circulated along and/or outside the
windings. The different types of cooling are treated separately in the
calculation because of the differences in the oil flows. The last model was
derived from the one-body equivalent circuit of thermal behaviour. This
model is based on an assumption that all losses are transferred to the
environment via a thermal resistance of the cooling equipment.

In long-term investigation, the semi-physical model from MIT group
presents the best performance in top-oil temperature calculation for
mentioned transformers. Results show the temperature deviation
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between measured and calculated top-oil temperature of less than 2 K for
the transformer cooling type ONAN and ONAF. The temperature deviation
is around 3 K for the transformer cooling type ODAF with varying
operating states of the fans.

The top-oil temperature neural network models were designed by varying
the following characteristics: network topologies, training algorithms,
number of hidden layers and numbers of hidden neurons. The one-hidden
layer and two-hidden layer were investigated for the Feed-forward
network type. Only one-hidden layer is modelled for the recurrent
networks, due to their more complex structures.

The network structure (number of neurons and set of weights) can be
achieved from network design software, which was developed in this work
using the Neural Network Toolbox in Matlab. The numbers of hidden
neurons was varied from 1 to 20 neurons. The networks were trained with
16 training algorithms. Consequently, 120 network structures with five
inputs and one target output were examined. The designed networks with
their training weights were compiled to mathematical models for top-oil
temperature calculation. Weights and biases obtained from the training
process were transformed to be the coefficients of the model. At the end,
the network structure with the best performance in top-oil temperature
calculation was reported.

The best results were obtained using the Levenberg-Marquardt, Scaled
conjugate gradient and Automated Bayesian Regularization training
algorithms. All investigated transformers showed that the multilayer feed-
forward network has a better performance than recurrent neural network
for top-oil temperature prediction. The training calculation process for the
recurrent neural network needed much more time than for the feed-
forward network. Low average temperature deviations were also obtained
with the one-layer Feed-forward network structure with a low number of
neurons. This network structure also gave slightly better performance
than the two-hidden layer networks. Compared with the Lavenberg-
Marquardt and the Scaled conjugate gradient backpropagation, results
from Bayesian regularization-training algorithm showed the lowest
average temperature deviations between measured and calculated top-oil
temperature. However, the Levenberg-Marquardt method requires the
shortest time for training the network.
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Good performance with average temperature deviations less than 2 K may
be obtained from both Feed-forward neural network model and physical
model. This performance is sufficient for applying the model in the online
monitoring system. However, the neural network model is more accurate
in the top-oil temperature prediction for the transformer with the varied
operating states of the cooling units. Results also show that the transient-
state of ambient temperature has a negative effect on top-oil temperature
prediction. Moreover, the unsteady-state behaviour of load current, such
as the shut-down state of the transformer has a negligible effect on the
accuracy of the investigated neural network model.

The ability of the model to detect malfunctions of the cooling units is
proved by the actual case investigation. The difference of the measured
and calculated top-oil temperature is observed during the period of the
malfunction of fans. Therefore, top-oil temperature prediction using the
neural network model is applicable in an online monitoring system.

To implement the model in the monitoring system, the network design for
each transformer unit is required. The network should be trained with
numerous qualitative measured data, especially the data of numbers of
operating cooling units. The accuracy of the model should be improved by
using the statistical data analysis. The input measured data, the model
coefficients and the calculation errors should be analysed.

In the second part of the work, a reliable vibration measuring system for
online condition monitoring of the tap changer is described. The
sequences of movable main contacts and transition contacts in the
diverter switch during the transition phase are studied. The vibration
signal during the tap change process is detected by a piezoelectric sensor
and is amplified by a preamplifier module. The amplified signal is then
sent to a measuring circuit for the transition time measurement. A
microcontroller is a key component in this measuring circuit. The
microcontroller has an advantage for application to various transformers
when the concept of measuring the characteristic time must be changed.
The measuring system can be automatically triggered by the vibration
signal. An output from the measuring circuit is transferred to a digital to
analogue converter. Finally, the characteristic time is obtained by means of
a current output in the range 4-20 mA. It may be later applied in the
control unit of the main monitoring system of the power transformer.
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The significant differences in vibration signatures and characteristic times
during the tap change process under normal condition and fault
conditions are seen from the investigations in the laboratory. The
mechanical simulated fault conditions of tap changer considered were
foreign parts obstruction between the contacts and loss of contacts. In
these cases, the characteristic time and its standard deviation value may
be employed as the online monitoring criteria for the tap changer.

The on-site measurements were done with a tap changer type VACUTAP®
VR 400Y-123/D-10191G. It was manually operated during no-load
situation. Results show that the developed measuring system can measure
the repeatable characteristic time under the normal operation of the tap
changer. It is confirmed to occur with a low standard deviation of less than
1 (0.2 for odd-tap position and 0.4 for even-tap position). The process is
proved by the control chart and the Shewhart procedure to be under
statistical control.

The characteristic time and the criteria must be defined at the set-up
phase of the implementations on different transformer units. A filter is an
additional part, which may be added to the measuring system to avoid the
effect of disturbance in the plant.

In conclusion, this vibration measuring system has a good potential to be
part of a comprehensive condition monitoring system. However, all
investigations in this work have been done under the no-load situation.
Therefore, this measuring system needs to be implemented and tested in
the noisy environment during the on-load situation. Different mechanical
failure conditions should also be simulated. The reliability to distinguish
other type of failures should be further proved.
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Moil
Mcu
Mre
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Py
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At

Tro

TroR
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Symbols

thermal capacity, Wh/K

period index

ratio of actual load to rated load
weight of oil, kg

weight of copper, kg

weight of iron, kg

weight of steel, kg

no-load loss, kW

short circuit loss at rated load, kW
total loss, kW

ratio of total loss to no load loss
thermal resistance, K/W

rated Voltage, kV

oil exponent

oil exponent

winding exponent

dissipation factor

sampling period, h

top oil time constant, h

top oil time constant at rated load, h
winding hottest-spot temperature, °C
top-oil temperature, °C

ultimate top-oil temperature, °C

initial top-oil temperature, °C

ambient temperature, °C

winding hottest-spot temperature, °C
top-oil temperature rise over ambient temperature, K
initial top-oil temperature rise, K

top-oil temperature rise at rated load, K
bottom-oil temperature rise at rated load, K
average oil temperature rise at rated load, K
ultimate top-oil temperature rise, K
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B Abbreviations

EHV Extra High Voltage

HV High Voltage

HVDC High Voltage Direct Current
MLP Multi-Layer Perceptron
MSE Mean Squared Errors
PD Partial Discharge

PT Potential Transformer
RMS Root Mean Square

oD Oil Directed

ODAF Oil Directed Air Force
OF Oil Force

OFAF 0il Force Air Force
OLTC On-Load Tap Changer
ON Oil Natural

ONAF Oil Natural Air Force
ONAN Oil Natural Air Natural
SOM Self-Organizing Map
SSE Sum Squared Errors
UHF Ultra High Frequency
UHV Ultra High Voltage
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A Deviation of Differential Equation (3.1)
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B Deviation of Differential Equation (4.1)
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C Training algorithm in MATLAB Neural Network

Toolbox
Training function Used for
trainbfg BFGS quasi-Newton backpropagation.
trainbr Bayesian regularization.
traincgb Powell-Beale conjugate gradient backpropagation
traincgf Fletcher-Powell conjugate gradient backpropagation
traincgp Polak-Ribiere conjugate gradient backpropagation.
traingd Gradient descent backpropagation.
traingda Gradient descent w/adaptive Ir backpropagation.
traingdx gradient descent w/momentum & adaptive Ir

ackprop.

trainlm Levenberg-Marquardt backpropagation.
trainoss One step secant backpropagation.
trainrp Resilient backpropagation (Rprop)
trainscg Scaled conjugate gradient backpropagation.
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D Characteristic Time Measuring Module

RMS Converter

A precise True RMS-to-DC Converter type AD736JNC by Analog Devices is
used for smoothing the signal from the preamplifier. It is a high

rectification for the AC voltage with low pass filter. The RMS value is
defined as the following U,ms [Kitchin, 1986]:

U, =+u()’

The response time constant may be calculated from the value of two
capacitors, which are connected to the RMS component. According to the
recommendation for general purpose in the data sheet of RMS component
[AD736], the 15 pF and 1 pF capacitors are chosen, consequently, the
response time is 36 ms. By the selection of these capacitors, the low
frequency cut-off (-3 dB) is adjusted to 200 Hz. Thus, the low frequency of
vibrations and zero-frequency component are weakened.

Comparators

A dual Comparator type LM393N is applied. Two different reference
values are adjusted through 0-50 k() potentiometers in the range from 0 to
5 V. Consequently, the first comparator is switched when the first edge of
the strongest vibration signal appears higher than the first reference
value. The second comparator is switched when the next edge of the
strongest vibration signal appears higher than the second reference value.

Microcontroller

The time between the two edges of the comparator outputs is calculated
with a microcontroller. A compact 8-bit AVR RISC microcontroller Model
ATtiny2313 from Atmel is applied in the circuit. The microcontroller is
driven with an external quartz type LF A120K from Rakon. The quartz
operates as a clock with a frequency of 4 MHz for a precise timing.

The microcontroller operates mostly in a waiting state and becomes active
only after the occurrence of an interrupt or a timer event, which makes a
precise time measurement possible. A 16-bit timer in the microcontroller
is executed with an adjustable clock pulse. The minimum measurable time
tmin (resolution) and the maximum measurable time tmq«x are determined
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via a selection of prescaler. Selecting a prescaler of 64 and a process of 4
MHz clock thus:

64

=— =16
AMH=z e

I'min
Emaxtimer = tmin 2'C = 1645 - 65536 = 10485765

The determination of the characteristic time starts at the beginning of the
first comparator signal and stopped at the beginning of the second
comparator signal. The characteristic time is always in the range of 500
ms, therefore, the maximum measurable time tnax is limited to the half in
order to maintain the high accuracy of measurement.

I'max,mess = Imax,timer *0.5 =524.288ms

The interrupt 0 and interrupt 1 at pin INTO and pin INT1 of the
microcontroller are executed by the positive edges of the signal from the
two comparators. The “Interrupt 0” is responsible for the time save
function and the “Interrupt 1” is for the time calculation. In case of time
overflow, the 20mA default value is shown when there is no other values
in the save function, otherwise the value is shown as before.

The microcontroller is programmed in C language. The program is based
on interrupt and timing. The flow chart of the microcontroller
configuration can be seen in Appendix E. The program composed of main
three source code files. The first source code file is the main function
program. The second source code file serves to declare the variables of the
main program. The third source code file contains the control routine for
D/A converter (www.mikrocontroller.net).

Transferring Signal

A 12-bit D/A converter type LTC1257 by Linear Technology carries out
the measured time as an analogue value. A 100 Q resistor and 100 nF
capacitor are adopted as the recommendation from the datasheet to
stabilize the output voltage. The output voltage ranges from 0 to 2.048 V.
The resolution of the 12-bit D/A converter is up to

2.048V
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The current output is obtained from a voltage to current converter type
AD694 by Analog Devices. It converts an input voltage from 0 to 2 V in an
output current from 4 to 20 mA. The characteristic time may be calculated
from the measured output current by

Iouz _Imin .

Lehar = max,mess

I'max = Imin
However, the output voltage of D/A converter may reach the voltage level
of 2.048 V> 2 V, consequently, results in a measuring are maximum of
20.23 mA. Therefore, the characteristic time tchar may be obtained from the
Output current Iout Wlth Imin = 4‘mA, Imax = 20.23 mA and tmax, mess — 524‘.288
ms.

_ Lo =AM o 0 288ms

Z‘chur
16.23mA

Power Supply System

A 1-watt DC/DC converter type [A2405S from XP Power is applied for the
power supply. This DC converter has an input voltage range of 21.6 V to
26.4 V (DC) and a bipolar output voltage with +5 V. The bipolar voltage is
used for the preamplifier and the RMS module. The microcontroller and
the D/A converters are operated with the voltage of -5 V and ground.
Whereas, the transmitter requires -5 V and +5 V for driving an additional
load resistors.
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