
Schriftenreihe des Instituts für
Energieübertragung und Hochspannungstechnik

Band 39 - 2022

Christoph Kattmann

Optimization of Power Flow Computation Methods

Universität Stuttgart
Institut für Energieübertragung und Hochspannungstechnik, Band 39

Optimization of Power Flow Computation Methods

Optimization of Power Flow
Computation Methods

Von der Fakultät
Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart
zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Abhandlung

vorgelegt von
Christoph Kattmann

aus Hannover

Hauptberichter: Prof. Dr.-Ing. Stefan Tenbohlen

Mitberichter: Univ.-Prof. DDipl.-Ing.
Dr. Robert Schürhuber

Tag der mündlichen Prüfung: 19.07.2022

Institut für Energieübertragung und Hochspannungstechnik
der Universität Stuttgart

2022

Bibliografische Information der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der

Deutschen Nationalbibliografie, detaillierte bibliografische Daten sind im
Internet über http://dnb.dnb.de abrufbar.

Universität Stuttgart
Institut für Energieübertragung und Hochspannungstechnik, Band 39

D 93 (Dissertation der Universität Stuttgart)

Optimization of Power Flow Computation Methods
© 2022 Kattmann, Christoph

Herstellung und Verlag: BoD – Books on Demand, Norderstedt
ISBN: 978-3-75-629545-6

Danksagung
Diese Arbeit entstand während meiner Tätigkeit am Institut für En-
ergieübertragung und Hochspannungstechnik an der Universität Stutt-
gart. Ich bin allen IEHlern, die diese Zeit mit mir geteilt haben, dankbar
für die Freundschaft, die Toleranz, die Geduld, den Humor, die Unter-
stützung und die Kompetenz.
Bei Prof. Tenbohlen muss ich mich vor allem für das Vertrauen, das er
mir all die Jahre entgegengebracht hat, den Antrieb und das Engage-
ment bedanken. Bei Prof. Braun, der mich am IEH eingestellt hat,
und Prof. Rudion, der meine Arbeit immer unterstützt hat, möchte ich
mich ebenfalls bedanken. Vielen Dank auch an Prof. Schürhuber für die
Übernahme des Berichts und die wertvollen Anregungen.
Ebenfalls danken möchte ich allen Studenten, die bei mir ihre Abschlus-
sarbeiten geschrieben haben und einen wertvollen Beitrag geleistet
haben, insbesondere Arne Ellerbrock, Mathias Jaschke, und Julian Lep-
pert.
Daniel Contreras und mein Bruder Tobias Kattmann haben viele kleine
und große Verbesserungen in die Arbeit eingebracht, vielen Dank für die
sicher langwierige Korrekturarbeit.
Meinen Kollegen Martin Siegel, Michael Beltle, Malte Gerber, und
Michael Schühle danke ich für die freundschaftliche Rückendeckung ins-
besondere während der Endphase der Arbeit.
Meinen Eltern und meiner gesamten Familie danke ich für die Unter-
stützung, den Optimismus und die Zuversicht, die sie mir schon mein
ganzes Leben lang mitgegeben haben und die bei dieser Arbeit manch-
mal besonders wertvoll war.
Meiner Freundin Melly danke ich aus tiefstem Herzen für die Geduld
und den Beistand an vielen langen Tagen. Unsere Tochter Olivia hat
von all dem wahrscheinlich noch nichts mitbekommen. Ich hoffe, die
Arbeit besitzt noch Relevanz, sollte sie sie eines Tages lesen.

i

ii

Abstract
Power flow computations are a cornerstone of many simulations regard-
ing the electric grid. With the recent developments in distributed gener-
ation and the continuing electrification of mobility and residential heat-
ing, a targeted grid operation and expansion is more important than ever
to ensure reliability and sustainability. At the same time, these devel-
opments change the preconditions of electric grid simulations and often
necessitate large-scale simulations with millions of individual scenarios.
This thesis evaluates the landscape of power flow computation meth-
ods with a focus on practical computational performance in large-scale
simulations, as they occur in modern distribution grid planning. For
this purpose, a number of power flow methods are investigated. In or-
der to enable a wider range of applications, a selection of complicating
grid elements and factors like multiple slack nodes, transformers, and
asymmetric conditions are investigated for their effect on complexity
and performance.
The main finding of this thesis is that the ZBUS Jacobi method, an often-
neglected power flow algorithm, can be magnitudes faster than the other
methods, especially the established YBUS Newton-Raphson method. An
important factor in the computational performance of all power flow
methods is an implementation guided by the requirements of modern
CPUs, which requires a mathematical formulation that leverages CPU
features like caching, instruction pipelining and branch prediction.
In addition to the solution methods, the thesis presents a series of ac-
celeration methods like static acceleration factors, grid reduction and
parallelization, which can be applied to power flow problems for a fur-
ther performance boost.
Finally, the thesis presents three real-world example problems and in-
vestigates the most performant solution method as well as the effect of
the various acceleration strategies.

iii

iv

Kurzfassung
Lastflussberechnungen sind der zentrale Baustein vieler Simulationen,
die das elektrische Netz betreffen. Entwicklungen im Rahmen der Ener-
giewende wie dezentrale Erzeugungsanlagen, elektrische Mobilität und
elektrische Wärmepumpen erfordern einen gezielten Netzbetrieb und
-ausbau, um die Zuverlässigkeit und Nachhaltigkeit der Energiever-
sorgung sicherzustellen. Gleichzeitig ändern diese Entwicklungen die
Anforderungen an Netzsimulationen und machen teilweise umfangreiche
Simulationen mit Millionen von einzelnen Berechnungsfällen notwendig.
Die vorliegende Arbeit untersucht gängige Lastflussmethoden mit einem
besonderen Fokus auf die Berechnungsgeschwindigkeit bei umfang-
reichen Simulationen, wie sie in der modernen Verteilnetzplanung
vorkommen. Dazu werden eine Anzahl von Lastflussmethoden vor-
gestellt. Um eine breite Anwendbarkeit sicherzustellen, werden weit-
erhin eine Reihe von komplexeren Netzelementen und -umständen wie
mehrere Slack-Knoten, Transformatoren und asymmetrische Bedingun-
gen untersucht und ihr Einfluss auf die Komplexität der Modelle und
die Berechnungsgeschwindigkeit analysiert.
Die Schlüsselerkenntnis der Arbeit ist die Effektivität der ZBUS-Jacobi-
Methode, einer oft vernachlässigten Lastflussmethode, die aber um
Größenordnungen schneller als andere Methoden sein kann, insbeson-
dere der YBUS -Newton-Raphson-Methode. Ein wichtiger Einfluss auf
die praktische Performance ist die Implementierung gemäß den An-
forderungen moderner Prozessoren unter Berücksichtigung von Caches,
Instruction Pipelining und Branch Prediction.
Zusätzlich zu den Lastflussmethoden präsentiert diese Arbeit mehrere
Beschleunigungsmethoden wie statische Beschleunigungsfaktoren, Net-
zreduktion und Parallelisierung, die die Lösung praktischer Probleme
weiter beschleuningen können.
Abschließend untersucht die Arbeit drei reale Netzsimulations-Probleme
im Hinblick auf die performanteste Lösungsmethoden und den Effekt
der vorgestellten Beschleunigungsstrategien.

v

vi

Contents

Abstract . iii
Kurzfassung . v
Table of Abbreviations . xi
Nomenclature . xiii

1 Introduction 1
1.1 Motivation . 1
1.2 History and State of the Art 3
1.3 Contributions of the Thesis 10
1.4 Structure of the Thesis . 12

2 Computational Performance 15
2.1 A Performance Comparison Comparison 15
2.2 Modern CPU Architecture 17
2.3 Guidelines for the Design of Performant Numerical Algo-

rithms . 22
2.4 Benchmarking Methodology 24

3 Principles of Power Flow Computations 27
3.1 The Power Flow Model 27
3.2 The YBUS Formulation of the Power Flow Model 33
3.3 Handling of Slack Nodes 37
3.4 Convergence Criteria . 40

4 Power Flow Solution Methods 43
4.1 YBUS Fixed-Point Methods 44

4.1.1 Principle . 44
4.1.2 The YBUS Jacobi Method 47
4.1.3 The YBUS Gauss-Seidel Method 50
4.1.4 The YBUS Relaxation Method 52

vii

4.2 The YBUS Newton-Raphson Method 55
4.3 The ZBUS Jacobi Method 63
4.4 Backward/Forward Sweep Method 67
4.5 Performance Characteristics 71
4.6 Power Flow Complications 78

4.6.1 Load Characteristics 78
4.6.2 Multiple Slack Nodes 80
4.6.3 PV Nodes . 84
4.6.4 Shunt Elements . 86
4.6.5 Asymmetry . 88
4.6.6 Multiple Voltage Levels 91
4.6.7 Transformers . 92

4.7 Handling of Convergence Problems 94

5 Computational Optimization Approaches 99
5.1 Acceleration Factors . 100

5.1.1 Acceleration of the YBUS Gauss-Seidel method . . 100
5.1.2 Acceleration of the YBUS Newton-Raphson method 102

5.2 Exploiting Sparsity . 104
5.2.1 Sparse ZBUS Jacobi Method 106
5.2.2 Sparse YBUS Newton-Raphson Method 107

5.3 Grid Reduction Methods 108
5.3.1 Lossless Grid Reduction Methods 108
5.3.2 Lossy Grid Reduction Methods 110

5.4 Weak Load Detection . 112
5.4.1 Separate Weak Load Detection 113
5.4.2 Modified Convergence Criterion 116

5.5 Parallelization . 118

6 Power Flow Case Studies 123
6.1 Time-Series Power Flow Computations in the European

LV Feeder . 123
6.2 Monte Carlo Simulation of EV Penetration in a Low-

Voltage Grid . 131
6.3 n-2 Contingency Analysis in a High Voltage Grid 138

7 Summary 143

Bibliography 146

viii

A Operation Counts of BLAS, LAPACK, and MKL rou-
tines 163

B Benchmarks of BLAS and LAPACK Operations 165

C Grid Data 167
C.1 Low-voltage grid from section 4.5 167
C.2 Medium voltage test grid from section 5.1.2 169
C.3 European Low Voltage Test Feeder 170
C.4 Low voltage grid from section 6.2 171
C.5 High voltage grid from section 6.3 175

ix

x

Table of Abbreviations
AC Alternating Current
ALU Arithmetic Logic Unit
BFS Backwards-Forwards Sweep
BLAS Basic Linear Algebra Subsystem
CPU Central Processing Unit
CSC Compressed Sparse Column
CSR Compressed Sparse Row
DTLB Data Translation Lookaside Buffer
EV Electric Vehicle
FLOP Floating Point Operations per Second
FPU Floating Point Unit
GPGPU General Purpose Graphics Processing Unit
HELM Holomorphic Embedded Load Flow
HV High Voltage
ITLB Instruction Translation Lookaside Buffer
KCL Kirchhoff Current Law
KVL Kirchhoff Voltage Law
LAPACK Linear Algebra Package
LV Low Voltage
MV Medium Voltage
PES Power and Energy Society of the IEEE
PV Photovoltaics or voltage-controlled node
RAM Random Access Memory
RMS Root Mean Square
TLB Translation Lookaside Buffer

xi

xii

Nomenclature

As this thesis touches on topics from electrical engineering, mathematics
and computer science, the notation cannot be adopted from one field
alone. This nomenclature introduces all notations necessary to be un-
ambiguous for researchers from all three fields.

Symbol Conventions

In all equations and algorithms, the mathematical expressions use

• italic letters like i for scalar values,

• underlined italic letters like U for complex values,

• bold letters like P for vectors and matrices and

• bold, underlined letters like Y for complex-valued vectors and
matrices.

A lower index signifies the corresponding entry in the vector or matrix,
so U i is the ith entry of the vector U.
The iteration count is put in parentheses in the exponent like x(m).

xiii

Vector & Matrix Operations

The Hadamard operators are frequently used to denote the element-
wise multiplication and division of two vectors of the same size. The
Hadamard Product (�) denotes the element-wise multiplication as in

A � B =

[
a1

a2

]
�

[
b1

b2

]
=

[
a1 b1

a2 b2

]
, (1)

and the Hadamard division (�) denotes the element-wise division as in

A � B =

[
a1

a2

]
�

[
b1

b2

]
=

[
a1/b1

a2/b2

]
. (2)

Multiplications of scalars and matrix multiplications do not use a symbol,
the dot · is reserved for the dot product between two vectors.
The unity matrix E (0 everywhere except 1 on the entire diagonal) is
used without explicit definition of the dimensions. It is assumed that E
is always chosen to fit the surrounding vectors and matrices.

Electrical Conventions

The direction of an electrical current in an AC grid is of course ever-
changing with the grid frequency. Nevertheless, the current is some-
times represented with an arrow in equivalent circuits. It is then to be
understood as relative to the direction of the voltage, which changes in
the same way.
In this thesis, the load convention is such that a positive real power de-
notes consumption or load, a negative real power denotes generation or
injection. A positive reactive power is assigned to a load with inductive
behavior, and a negative reactive power to capacitive loads.
Electrical quantities denoted in capital letters, like U and I, refer to the
RMS values.

Equivalent Circuits

The symbols in the equivalent circuits are chosen according to IEC 60617
[49].

xiv

Table 1: Symbols used in equivalent circuits

Symbol Explanation

Resistance with value R or complex impedance with
value Z

Inductance with value L

AC voltage source with voltage U

AC current source with current I

Load with constant power S

Node i, to which a load with constant power Si is
attached

Algorithm Notation

As a main subject of the thesis is the formulation of algorithms which are
meant to be implemented using modern, high-level programming lan-
guages and numerical libraries, the capabilities of those environments
are used in the algorithms even if they have no simple mathematical
equivalent. In the algorithms shown in this thesis, the operators and
functions are used analogous to the capabilities of the Numpy library for

xv

Python. Indices of vectors and matrices therefore start at 0. Accessing
parts of vectors or matrices is achieved using bracket notation, which is
outlined in table 2.

Table 2: Bracket notation for partial access to vectors and matrices

Notation Explanation
P[i] Value of P at index i

P[: i] Vector of values of P up to, but not including index i

P[i :] Vector of values of P starting at index i up to the end
Y[i, :] Vector containing the entire ith line of the matrix Y
Y[1 :, 1:] Matrix containing everything from Y except the first

line and column

The special functions outlined in table 3 are used throughout the thesis,
all of which have direct analogs in Pythons Numpy and other numerical
libraries.

Table 3: Special functions used in algorithm listings

Function Description Example
|()| Absolute value |[1, −1, 3 + 4i]| = [1, 1, 5]
arg() Argument arg([1, −1, 3 + 3i]) = [0, π, π/4]
exp() Exponent exp(jπ) = −1
cumsum() Cumulative sum cumsum([1, 2, 3]) = [1, 3, 6]

diag() Diagonal of matrix diag(

[
1 2
3 4

]
]) = [1, 4]

reversed() Reverse vector reversed([1, 2, 3]) = [3, 2, 1]
argmax() Index of max. element argmax([1, 6, 3]) = 1

In some places, the breakdown of operations uses the star symbol ⋆ for
a previously computed value with no explicit name. Its meaning should
always be clear from the context.

Variables and Symbols

Table 4 lists the used variable and symbol names.

xvi

Table 4: Variable and symbol names used throughout the thesis

Symbol Unit Explanation
n − Number of nodes in the grid
i, j, k − Node indices
m − Iteration count
U V Voltage
U i V Voltage from node i to ground
U ij V Voltage difference from node i to j

U A Vector of the voltages of all nodes
I A Current
Ii A Load Current at node i

Iij A Current through the line connecting nodes i and
j

I A Vector of the load currents at all nodes
IR A Vector of residual currents
S VA Complex Power
Si VA Complex Power at node i

S VA Vector of the complex powers of all nodes
SR VA Vector of residual complex powers
Z Ω Impedance
Zij Ω Impedance of the line connecting nodes i and j

Zij,p Ω Impedance of the line connecting nodes i and j in
phase p

Z Ω Inverted admittance matrix
Y 1/Ω Admittance
Y ij

1/Ω Admittance of the line connecting nodes i and j

Y 1/Ω Admittance matrix
Ydiag

1/Ω Vector containing the main diagonal of the admit-
tance matrix

ϵ − Convergence Threshold
ϵS VA Convergence Threshold for Power Residual
ϵI A Convergence Threshold for Current Residual
ϵU V Convergence Threshold for Voltage Step

xvii

xviii

Chapter 1

Introduction

1.1 Motivation
The electric power supply system is one of the most large-scale and
complex man-made systems in the world. Its continuous operation is
essential for many parts of modern civilization, and ensuring its reliable
service is the primary task of all power plant and grid operators as well
as power system regulators.
The reliability of the electric power system is a constant challenge be-
cause the operating state of the electric grid is inherently unstable on
several levels. Without constant intervention by several, deeply inter-
woven control loops, electric power generation would cease to function
within seconds. Without finely tuned market systems, the power demand
might not be met by an equal generation at all times, and system-critical
institutions and companies might be at risk. Without sensible regula-
tions and focused technical progress, the long-term growth and change
of power generation and consumption would slowly lead to an unsuit-
able electric grid. The fact that this techno-economic system has largely
worked without fault for decades is a testament to the work of thousands
of engineers and scientists in many fields.
Their work is complicated by the fact that, as opposed to many other
engineering and scientific problems, it is very hard to develop any aspect
of the electric grid in situ, i.e. using the real grid for experiments. This
has led to the rise of simulations as a major component of all research
and development concerning the electric grid. Today, simulations are a
part of almost all short- and long-term decisions about the electric sys-

1

CHAPTER 1. INTRODUCTION

tem, like the dispatch of power plants, grid expansion planning, approval
of local photovoltaic (PV) plants, the scheduling of maintenance work
or even strategic directives that affect the economies of entire nations
for decades to come.
The trend towards a more sustainable energy generation has made the
conditions for those simulations more complex. Historically, electric
power generation was centralized in big power plants, which were con-
nected to the highest-level transmission grid. From there, the power
flowed through the distribution grid levels (high, medium, and low volt-
age) to the consumers, which largely consisted of predictable household,
commercial, and industrial loads. Under these conditions, the design
and dimensioning of the distribution grids was simple: The grid had to
withstand the highest consumer load. If the grid was suitable for this
single condition, it was suitable for all other operating conditions as well.
The prevalence of distributed generation like PV plants and wind power
generators, which are predominantly connected to distribution grids, has
invalidated this simple approach. The state of highest load might now
also occur when consumption is low and generation is high, turning dis-
tribution grids into net generators of power. Overloads of individual
lines or voltage band violations can also be caused by power flowing
from generators to consumers inside of one grid, even if the overall load-
ing condition seems uncritical.
At the same time, the trend towards electric vehicles and residential
heat-pumps changes the nature of the consumer side. Whereas before,
the largest household loads like electric stoves were active only during
short and well-distributed times during the day, electric vehicles can
draw a multiple of that power and also show a considerable correlation
among households.
As a consequence of these developments, grid planning today involves a
lot more individual simulations than before, usually as time-series sim-
ulations, e.g. the individual simulation of every hour or even minute
in a year. A comprehensive grid expansion study including multiple
expansions variants and contingencies can quickly comprise millions of
individual simulations [85].
At the core of these simulations is usually some variant of a power flow
computation - a function that takes a set of powers and a grid model
expressed through its topology and individual line impedances as input,
and computes the voltage at each individual node, from which all other
electrical parameters concerning the flow of power in the grid can be
derived.

2

CHAPTER 1. INTRODUCTION

The computational runtime of these power flow computations, which was
not an issue in the days of single-case grid expansion planning, is be-
coming a serious obstacle for large-scale studies. Alternative approaches
like probabilistic power flow [121] can approximate the results of these
studies, but for more complex scenarios e.g. involving intermittent pro-
ducers and consumers, conventional power flow computations are still
indispensable and increasingly represent a serious bottleneck for data-
driven distribution grid planning. This emerging problem motivated the
research that led to this thesis.

1.2 History and State of the Art
The need for studies on the state and reliability of the electric grid has
driven the development of power flow computation methods since the
beginning of the 20th century. The first computational aids for the
simulation of electric grids and its connected elements were AC net-
work analyzers, scaled-down grids in a lab environment which contained
physical models of transmission lines, generators, loads, transformers,
and shunt elements with matching values (not to be confused with EMC
network analyzers used to evaluate high-frequency circuits). Often, the
operating frequency was elevated to scale down the model capacitances
and transformers. The first general-purpose AC network analyzer was
built at MIT in 1929 [44] , and the design was improved at least until
1952 [60].
The advent of digital computers in the 1940s was closely followed by
the engineers of grid operators who were looking for cheaper and more
flexible ways to conduct power flow studies. The first paper in the
IEEE database that mentions this possibility is from 1946 [56]. Up to
around 1955, research in this area mainly focused on establishing the
possibility of power flow computations with all their complications and
the optimal usage of the punch-card computers of the day. The Ameri-
can grid operators and universities were the most active in this domain,
probably because they had the best access to the first computers. Lyle
Dunstan from the Federal Power Commission was one of the first to
publish results in 1947 [28], needing ”only ten hours” to compute the
power flow for a network with 24 nodes. (Today, that task would take
only milliseconds on even the lowest-end hardware.) He then used the
method to calculate coefficients for the influence of load changes on
currents and voltages [29], the first automatic linearization of power

3

CHAPTER 1. INTRODUCTION

flow equations.
In the late 1950s, research around digital power flow solutions heated up
with the increasing capabilities and availability of computers. Dunstan
[27] and J. Henderson [45] presented their workflows on punch-card
machines in detail.
Up to this point, one severe obstacle for the proliferation of power flow
computations was the arduous and error-prone manual data parsing from
grid plans and parameter tables to the matrices and vectors required for
the computation. In 1956, Ward and Hale [120] presented an approach
to use a nodal formulation of networks to make the automatic formula-
tion of the required data structures easier. Their equations evolved into
the YBUS formulation of the power flow problem (introduced in section
3.2) and enabled the application of standard mathematical methods
with all their optimization approaches.
Glimn and Stagg [39] [57] [14] for instance built on the nodal formulation
to investigate various iterative solution methods, like the Gauss-Seidel
method with acceleration factors, pushing the time required for one
power flow computation down to minutes.
Almost every researcher from that time still spent considerable effort
comparing digital computers to analog AC network analyzers, usually
emphasizing the need for both. The rapid development of computers
however rendered network analyzers obsolete by the 1960s, relegating
them to a curiosity of technology history.
In 1959, J. van Ness applied the Newton-Raphson root-finding method
to the YBUS formulation [115]. His outstanding contribution is the
formulation of the required Jacobi matrix in terms of known values,
eliminating the need for a costly manual or automatic derivation of
the power flow equations. Due to the, at the time, ”excessive” storage
demands, the method found little adoption until significant progress
was made by W. Tinney in 1967, who devised a sparse storage scheme
for the Jacobi matrix [109]. The robustness of the Newton-Raphson
solution method against complicated network topologies contributed to
its general applicability and established it as the most-used solution
method until today.
In 1962, Brameller and Denmead introduced the ZBUS method [10].
Brown et al. later explored further solution methods based on the
method and added many relevant component models [12][13]. The
method was however never widely adapted, again due to the storage
demands, which could not be overcome with a sparse formulation this
time.

4

CHAPTER 1. INTRODUCTION

With that, a wide selection of solution methods was known and the
foundations for decades of optimization, extension and adaption were
set. In fact, in 1964, M. Laughton and M. Humphrey Davies published
the first overview paper [63] and attempted a classification of many
different power flow solution algorithms.
In the following years, most research focused on the application of the
newfound capabilities to more advanced concepts like state estimation
[62], probabilistic calculations [3][4][121], and technical and economic
optimizations [22][83]. In fact, by the 1970s, the progress of computing
performance had satisfied the technical needs, and the speed of power
flow computations was no longer a limiting factor for many applications.
Today, power flow computation has become a feature of programs or
libraries that often have a greater scope like dispatch and flow optimizers
or asset management. For those programs, the speed of the power flow
computations is not the main focus.
In the scientific community, after the heydays of power flow develop-
ments in the 1960s and 70s, the number and focus of publications on
the performance of power flow methods has declined. A frequent prob-
lematic issue of newer publications is the reliance on findings of older
papers regarding computational properties, which were observed with
the hardware available at the time and whose performance - quanti-
tatively as well as qualitatively - bares little resemblance to modern
computers. Also, over the years, some precedence for imprecise usage
of formal numerical terms was set, and so some papers today continue
to cite these inaccurate notations, most egregiously ill-conditioned (see
section 4.7), which is frequently broadly attributed to matrices, grids,
networks, or ’systems’ [55][113][98][66][11][73][38][31][71][7][20][78][80] as
a justification for new algorithm developments, evidently without any
investigation of the numerical phenomenon, its effect or the readily
available remedies.
A list of selected publications from circa 1990 to 2020 is listed below.

Reviews and Comparisons

There is no shortage of review and comparison papers about power flow
solution methods. However, there is very little value these papers could
contribute since the 1970s. Regrettably, a common understanding of the
existing landscape of power flow methods is missing, and long-known
methods are sometimes presented as ’novel’.

5

CHAPTER 1. INTRODUCTION

The challenging task of properly conducting benchmarks on modern
CPUs and explaining the results is mostly avoided. The author has no
knowledge of an overview paper with comprehensive benchmarks that
were conducted with modern, cache-based CPUs, which were introduced
in the 1990s.
In [126] from 1995, the author lists several solution methods specifically
for radial distribution grids, including a network reduction method and
three topological methods and compares them to the YBUS Newton-
Raphson method and a ZBUS Jacobi method. The computational per-
formance is measured in FLOPs, which is a flawed metric. (see section
2.4)
In [73] from 2008, the authors list works on power flow methods with a fo-
cus on distribution grids and sort them into three categories: Backward-
Forward Sweep, ”Implicit ZBUS Gauss Methods”, and Newton-like meth-
ods. They state that ”classical techniques […] may become inefficient as
in the case of ill-conditioned […] networks”. Several of the methods listed
under Backward-Forward Sweep ([37][69][90][98]) are actually ZBUS Ja-
cobi methods which use a topological approach to construct the matrix
Z.
In [7] from 2011, the authors also state that ’distribution networks [...]
fall in the category of ill-conditioned power systems’. They use roughly
the same categories as [73] and additionally list ”Compensation meth-
ods”, an ”Implicit ZBUS Gauss Method”, and a ”Direct method”, which
are all just various formulations of the ZBUS method.
In [74] from 2018, the authors claim that ”the Gauss-Seidel and Newton-
Raphson techniques […] fail to the meet the requirements in both perfor-
mance and robustness aspects” without any further explanation. It goes
on to list a ”Network Topology method” [107], a Backward-Forward
Sweep method [78], and a ”Novel Based Method” [40] which all end up
being mathematically identical to the ZBUS Jacobi method.
In [97] from 2018, a paper on design considerations for distribution
test feeders, the authors list the Backward-Forward Sweep method,
two ’Impedance Methods’, which are both identical to the ZBUS Jacobi
method, and the YBUS Newton-Raphson method. The paper also lists
a ”fixed-point iteration method” under ”Other Methods”, although the
Backward-Forward Sweep method and the ZBUS Jacobi methods are
also fixed-point methods. The cited fixed-point method is again mathe-
matically identical to the ZBUS Jacobi method.
The book ’Elektrische Kraftwerke und Netze’ by Oeding and Oswald
[79] (7th edition from 2011) is a German standard textbook on power

6

CHAPTER 1. INTRODUCTION

grids and contains a classification of power flow methods. They separate
the methods based on whether they are derived from a current or a
power equilibrium, which leads to a completely different classification.
The authors place a great emphasis on the better algorithmic efficiency
of Gauss-Seidel methods compared to Jacobi methods, but the compu-
tational performance is not evaluated at all.
In the book ’Power System Modelling and Scripting’ [71] from 2010, the
author Frederico Milano presents practical, albeit computationally ineffi-
cient implementations of the YBUS Jacobi, YBUS Gauss-Seidel and YBUS
Newton-Raphson methods as well as a comprehensive set of device mod-
els in Python. He correctly recognizes that the YBUS Jacobi method has
a computational advantage over the YBUS Gauss-Seidel method because
it can be implemented in a vectorized fashion, he however incorrectly
assumes that that advantage would not occur in a ”system language”
like C or Fortran.

YBUS Newton-Raphson Methods

The YBUS Newton-Raphson method quickly came to dominate the sci-
entific and commercial landscape of power flow algorithms. However,
just like in other domains, the Newton-Raphson method is very hard to
improve on algorithmically. One promising approach is to approximate
the Jacobi matrix, which creates an inexact Newton method. However,
no specific acceleration approach has found widespread usage beyond the
decoupling approach only usable in wide-area transmission grids [103].
In [88] from 1982, the authors present an implementation of the Fast-
Decoupled Load Flow method on a specialized array coprocessor which
can execute vectorized operations. The paper is fully dedicated to the
implementation and contains many statements that are true with today’s
CPUs, which integrated these vector instructions shortly after their use-
fulness was proven by these dedicated processors.
In [66] from 1997, the author claims to develop a formulation of the
Jacobi matrix in complex terms only, but actually attempts to make
the Newton-Raphson method more efficient by using partial difference
equations, not derivations, and then neglect one of the partials, which
leads to a formulation of the simplified Jacobi matrix in complex terms.
This is in fact just an inexact Newton-Raphson method.
In [124], also from 1997, the author presents a method derived from the

7

CHAPTER 1. INTRODUCTION

Newton-Raphson method, which ends up being mathematically similar
to a Backward/Forward sweep method and has no mathematical fea-
tures of a Newton-Raphson method. The specific construction of the
matrices required for the algorithm is numerically convoluted and offers
no advantage with a modern cache-based CPU.
In [34] from 1998, the authors apply an inexact Newton-Krylov method
to the power flow problem, which has proven its power in large-scale
equations of linear systems in other domains. They analyze and com-
pare different pre-conditioning approaches. Naturally, the method works
best for very large power systems with thousands of nodes.
In [19] from 2014, a comprehensive computational optimization of the
Fast Decoupled Power Flow method is laid out, including optimal usage
of SIMD using SSE and AVX. Additionally, a parallelization scheme for
a contingency scheme is presented.
In [70] from 2015, a GPGPU implementation for the Fast Decoupled
Power Flow method is presented. The thesis is focused on large trans-
mission grids, and shows that there are no significant performance gains.

ZBUS Methods

After the initial papers in the 60s [10][12][13], the attention on the
ZBUS method was dwarfed by the YBUS Newton-Raphson method. After
the proposal of the Backward-Forward Sweep method for an individual
feeder, multiple attempts were published to extend the principle to arbi-
trary grid shapes, without realizing that this inevitably leads to methods
which are mathematically identical and computationally inferior to the
ZBUS Jacobi method. The original sources are very seldom mentioned,
and there has been barely any progress or deeper analysis concerning
the original method.
In [98] from 1988, the authors develop a method to topologically con-
struct the relationship between the currents injected in the nodes and
the resulting voltages by ordering the network into layers and iterating
through it from the furthest node towards the center. They also extend
the method to work with meshed networks by introducing breakpoints
which act as injection nodes in two ’arms’ of the network, and call this
approach a ”compensation method”. It is not clear how the topological
operation could be executed in an automated fashion. The method is
mathematically identical to the ZBUS Jacobi method, which is not men-

8

CHAPTER 1. INTRODUCTION

tioned in the paper, but at least alluded to in the answer to a reviewer.
In [17] from 1991, the author introduces a set of component models
and briefly introduces the ZBUS Jacobi method under the name ’ZBUS
Gauss method’. This paper is frequently cited as a source for the ZBUS
method, although it contains no well defined algorithm and there are
earlier sources (see above).
In [37] from 1999, the authors devise a comprehensive algorithm to ex-
tend the Backward/Forward Sweep method to a radial topology by cre-
ating an elaborate numbering scheme for nodes that appear in a branch.
This is again a convoluted way to construct Z.
In [107] from 2003, the author presents another topology-based approach
to construct the matrix Z, based on a modified incidence matrix, and
calls it a ’direct approach’, although the method is again identical to
the ZBUS method and therefore requires iterations. The author also in-
cludes a normalized execution time comparison against a method based
on [17], which is algorithmically identical, and concludes that his method
is faster, but there are no implementation details for either method.

Available Power Flow Codebases

There are a number of for power flow software packages available, but
only a few are based on completely open-source stack.
The power system analysis software package OpenDSS [25] by EPRI
is written in Delphi, a dialect of Pascal. It contains a multitude of
features to simulate more high level concepts like active operation us-
ing voltage regulation devices, reliability, and efficiency. The integrated
power flow solver contains implementations of a YBUS Jacobi method
and YBUS Newton-Raphson method [26]. However, the main power flow
feature of OpenDSS is the on-the-fly transformation of electrical devices
between nodal current injections and admittances in the YBUS matrix,
to employ a direct solution of the remaining linear equations when the
precision requirements are lower, e.g. during fault studies. From a tech-
nical standpoint, OpenDSS is built on the COM interface of Microsoft
Windows and is not fully compatible with other operating systems.
GridLAB-D [16] by the US Department of Energy is described as a
’modeling and simulation environment’. It is based on an agent-based
approach to power systems and includes provisions for market simula-
tions, distribution automation control, and time-series. The power flow
itself is conducted using a YBUS Newton-Raphson method, and there is

9

CHAPTER 1. INTRODUCTION

no particular focus on performance.
PYPOWER is a power flow and optimal power flow library written
for use with Python. It is derived from the Matpower library for the
commercial numerics software MATLAB. PYPOWER contains an im-
plementation of the Newton-Raphson method which is algorithmically
solid, but computationally poor. Pandapower [108] is a more compre-
hensive power system analysis suite built on top of PYPOWER which
includes a slightly more computationally performant construction of the
Jacobi matrix using the JIT-compiling functionality of Numba. A com-
parison to the runtime of PYPOWER is included with every practical
example in chapter 6.

1.3 Contributions of the Thesis
Any contribution to a numerical simulation of a physical system happens
in one or more of the steps outlined in Figure 1.1.

Figure 1.1: The stack of numerical computations of physical systems

Each of the five distinct steps can be optimized to achieve a better run-
time for the entire simulation. In the case of power flow computations,
many existing approaches are top-down: The fast-decoupled power flow
method, for example, defines a modified mathematical model in step 1,
in order to accelerate the subsequent solution with a conventional YBUS
Newton-Raphson method.
This thesis presents a bottom-up approach: At first, a selection of ex-
isting algorithms is optimally implemented based on the properties of

10

CHAPTER 1. INTRODUCTION

the numerical interface defined by the underlying hardware and low-
level numerical software. The optimized implementations then allow for
an informed choice when choosing an algorithm for a particular prob-
lem. It turns out that, for the specific large-scale problems that occur in
distribution grid planning, the ZBUS Jacobi method can be remarkably
effective. The thesis outlines a novel extension to the method to work
with grids with multiple slack nodes in order to contribute to its wider
applicability. Finally, the optimization effort is put into context by eval-
uating more general acceleration approaches and presenting results from
three large-scale example problems.
The individual research goals of this thesis are as follows:

Research goal Chapter
Establish the foundations of computationally performant
numerical methods for modern CPUs and assess their
impact on power flow methods

2

Derive, define and classify the most relevant existing
power flow algorithms including the modeling assump-
tions

3 & 4

Find and note the most performant implementations of
the chosen power flow algorithms

4

Fill the gaps in the applicability of the highly performant
ZBUS method, especially in grid models with multiple
slack nodes, which occurs frequently in high-voltage grids

4.7

Explore the performance impact of popular acceleration
approaches in the context of the computationally op-
timized methods and find new approaches suitable for
large-scale time series problems in distribution grids

5

Demonstrate the achievable performance of the optimized
methods and acceleration approaches by solving example
problems characterized by large-scale time series

6

Because the thesis is motivated by distribution grid planning, model sim-
plifications related to a specific R/X ratio, which are the basis of many
acceleration approaches tailored to transmission grids, are not consid-
ered. The conventional nodal grid model is regarded as given through-
out the thesis except for the grid reduction approaches in Section 5.3.1.
There is also no attempt to find a new solution algorithm, as there is

11

CHAPTER 1. INTRODUCTION

a wealth of ultimately fruitless attempts in this direction already. The
first two steps in the numerical stack in Figure 1.1 are therefore not con-
sidered as degrees of freedom in the search for optimal performance.
The focus is also not on a choice of specific hardware platforms in step 5
in Figure 1.1, like GPGPUs, FPGAs, or specific CPUs built for scientific
calculations. The computations are all performed on a standard x86/x64
platform. Acceleration efforts are concentrated on the implementation
(step 3), guided by an optimal choice of underlying numerical routines
in step 4.
Finally, there is no attempt to reach rigorous mathematical assertions
related to power flow computations. All discussed factors are in the
interest of computational performance.

1.4 Structure of the Thesis
The thesis is organized in 7 chapters which build on each other linearly.
In Chapter 2, the foundations of computational performance and the
conditions for an efficient program on modern CPUs are introduced.
Building on those foundations, a set of performance indicators and the
benchmarking methodology are established.
In Chapter 3, the process of building a mathematical model from a real-
world electric grid is discussed in detail. After a general discussion of
complexity vs. computability in the context of electric grids, the YBUS
formulation is introduced, together with a guide on how to handle slack
nodes and the available convergence criteria.
In Chapter 4, six different solution methods are introduced and dis-
cussed. The mathematical foundations and efficient algorithms are pre-
sented. A discussion about their computational performance using the
indicators established in Chapter 2 follows. Additionally, some compli-
cating real-world grid elements and circumstances, like multiple slack
nodes, complex load characteristics, or transformers are discussed and
their impact on the power flow model, the solution method, and the
performance is presented.
In Chapter 5, some optimization approaches for the runtime of power
flow computations are presented. These include implementation details
like sparse matrix representations, acceleration factors, and paralleliza-
tion as well as grid reduction methods and heuristic methods to skip
certain power flow computations altogether.
In Chapter 6, the presented power flow methods and optimization ap-

12

CHAPTER 1. INTRODUCTION

proaches are applied to three real-world problems, and several solution
strategies are discussed for each. The problems are time-series power
flow computations in a low voltage grid, a Monte-Carlo simulation to
evaluate the impact of electric vehicle charging on a low-voltage grid
and n-2-contingency analysis in a high voltage grid.
Chapter 7 concludes the thesis with a summary.
The appendix is comprised by an overview of raw floationg point opera-
tion counts of the BLAS/LAPACK routines used throughout the thesis,
a benchmark of the dominating BLAS/LAPACK operations, and the de-
tailed node and line data for the grids used in the examples in sections
6.2 and 6.3.

13

CHAPTER 1. INTRODUCTION

14

Chapter 2

Computational
Performance

The computational performance of power flow algorithms is the central
research subject of this thesis. It is therefore warranted to discuss the
broader context of computational performance today.
The features of modern CPUs, like caches, branch prediction, and out-of-
order execution are introduced and their impact on the optimal formu-
lation and implementation of power flow methods is discussed. These
impacts lead to a set of guidelines that the later chapters follow. Fi-
nally, the benchmarking methodology for the remainder of the thesis is
presented.

2.1 A Performance Comparison Compari-
son

In their influential 1968 book ’Computer Methods in Power System Anal-
ysis’[102], the authors Glenn Stagg and Ahmed El-Abiad show a com-
parison between different power flow methods in terms of iteration count
and computing time per iteration. Their findings on iteration count are
of course timeless - the mathematics of iteration and convergence has
not changed. The computation time per iteration however has changed
dramatically between 1968 and 2021. Figure 2.1 (a) shows their Figure
8.16 from the book which indicates the performance of their methods on

15

CHAPTER 2. COMPUTATIONAL PERFORMANCE

the computers of the day.
Regrettably, they chose to measure the time in term of unspecified

Figure 2.1: Comparison of time per iteration of power flow methods from (a)
1968 [102], most likely on an IBM 650 or IBM 70-series and (b) 2021, created
by the author on an Intel Core i7-8550U.

’time units’, although its plausible for the era that the unit is actually
minutes. The exact grid is also unspecified, but the focus of the book
on transmission grids indicates that the grids are probably meshed and
have a high voltage level.
Notably, their time per iteration for the ZBUS method (Gauss-Seidel in
this case) increases exponentially with the number of nodes, and timings
for the YBUS Newton-Raphson and YBUS Gauss-Seidel methods increase
linearly. The authors chose to omit the Jacobi method completely (called
”Gauss” method in the book), because, as they claim, ”the time per it-
eration for these two methods [the Jacobi and Gauss-Seidel methods]
is about the same”. The qualitative hierarchy between the methods is
clear: For all but the smallest grids, the YBUS Gauss-Seidel method has
the fastest computation time per iteration, the YBUS Newton-Raphson
method comes next, and the ZBUS method is slower still. The YLOOP
method is a power flow method based on manually drawn loops in the
grid which is irrelevant today.

16

CHAPTER 2. COMPUTATIONAL PERFORMANCE

Figure 2.1 (b) shows a recreation of the same plot on a CPU from 2018
with the timings of the methods developed in this thesis, as faithfully
to the original as possible regarding the lack of information about the
exact grid and loads used.
The comparison of the two plots shows that the runtimes have changed
not only quantitatively - if the ’time unit’ is indeed minutes, the times
per iteration are around 3 million times faster - but also qualitatively.
First, the comparison between the YBUS Gauss-Seidel (green line) and
YBUS Jacobi (red line) methods shows that their timings are not the
same at all, the Jacobi method is around 10 times faster. Most dramat-
ically, the ZBUS method (blue line) that was among the slowest in 1968
is now faster than the YBUS Gauss-Seidel and Newton-Raphson meth-
ods in terms of time per iteration. The YBUS Newton-Raphson (orange
line) method stands out as comparatively slow in 2021. The scaling of
all methods with respect to the number of nodes has also changed - the
time per iteration of all methods now grows exponentially with node
count. So, what happened in the last 50 years that not only sped up
these computations by a factor of millions, but also put the rules of slow
and fast numerical computing on its head?
The answer lies in the architecture of modern CPUs, which over the
years has exploded in complexity to maintain the rate of progress in
performance. As a result, CPUs today have different performance char-
acteristics and favor a different program design than the machines that
Stagg and El-Abiad worked with.

2.2 Modern CPU Architecture
As shown, computers have undergone an explosive development since
the days of the first power flow computations and are now magnitudes
faster. The raw performance metrics of CPUs are particularly impres-
sive: The IBM 650 used for the first power flow computations in the
fifties achieved 5000 scalar multiplications per minute [48], the perfor-
mance of a modern CPU is measured in GFLOPS (billion floating point
operations per second).
However, a computer consists of more than just the CPU core which exe-
cutes these operations. The devices supplying the data such as memory,
disk storage and the connecting buses also contribute to the overall per-
formance of program execution. Although there has been major progress
in these areas as well, modern CPUs can now process data much faster

17

CHAPTER 2. COMPUTATIONAL PERFORMANCE

than it can be transmitted to them from conventional memory [33]. In re-
sponse, CPU caches and techniques like instruction pipelines and branch
prediction (all further explained below) were developed. This has a lead
to a complex data pipeline, which can speed up the data transmission to
the CPU core, but whose effectiveness can vary greatly between different
programs. As a result, the adaption to this data pipeline is the main
challenge of computational performance and the main optimization ap-
proach for silicon, microcode, driver and library development today [46].
These developments have in turn shaped the requirements for performant
program design and implementation. Algorithms are now computation-
ally performant if they can leverage CPU caches, instruction pipelining,
branch prediction and other techniques to their advantage, and not only
if they perform their task in the fewest steps or show good theoretical
scaling behavior (usually expressed in Landau or Big-O notation, e.g.
O(n2), which represents an upper bound on the function that describes
the computational complexity of an algorithm.)
Figure 2.2 shows the basic building blocks of a modern CPU and the full
data pipeline. The central computing elements for the numerical tasks
required for power flow computations are FPUs (Floating-Point Units).
The Intel 7260U CPU which is used for the main benchmarks in this
thesis has two cores which each contain one FPU.
The Figure also shows the rough timings [68] of the data transfer be-
tween the CPU core, the caches, RAM, and the disk, including a disk
cache.

Caching

Caches are a smaller, but much faster segments of memory built directly
into the processor [82]. They are shown in green in Figure 2.2. CPUs
today usually have 3 levels of builtin cache, L1, L2, and L3, with in-
creasing size but decreasing speed. The memory management engine of
the CPU loads portions of memory into the caches, either on specific
request of an instruction or speculatively (prefetching [8]).
If an instruction requests a piece of data that is not in the cache, that
is called a cache miss and carries a large performance penalty [23]. The
data then has to be loaded from the main memory, which on normal
systems takes in the neighborhood of 50 ns (150 CPU cycles on a core
with 3 GHz clock frequency) instead of around 1 ns (3-4 CPU cycles)
[46]. If the CPU needs that data to continue, which it usually does, the
CPU core is stalling in that time and sits idle.

18

CHAPTER 2. COMPUTATIONAL PERFORMANCE

Figure 2.2: Basic memory hierarchy of the Intel i5-7260U CPU and system
used for all benchmarks throughout this thesis. The timings show the large
differences between data load times from different sources and highlight the
importance of caching.

19

CHAPTER 2. COMPUTATIONAL PERFORMANCE

The caches always request and store data in fixed portions, the cache
lines, which, are usually 64 Bytes long today [52]. For the double-
precision floating point numbers that are common for scientific comput-
ing problems, this means that the cache is always filled with 8 numbers
that were contiguous (aligned in series) in memory. This is advantageous
if the memory access is uniform, and data is loaded and operated upon
in series, because in that case the next value already sits in the cache
and does not need to be loaded at all. On the flip side, non-uniform,
random memory accesses trigger frequent cache misses and can severely
hurt performance.
The number of cache loads and misses can be measured and serves as
an important indicator for the efficiency of an implementation.

Translation Lookaside Buffers

All of the memory of a computer, including the caches, is organized as
virtual memory by the operating system. This provides every process
with a virtual, uniform memory segment, even when its fragmented in
the physical memory or overflows onto the hard drive (paging). The
translation of virtual to physical memory addresses is managed by the
kernel and is supported by another cache: the translation lookaside
buffer (TLB) [46]. It exists for the data of a process (DTLB) as well
as for the instructions themselves (ITLB). A TLB miss also causes a
severe delay while the data has to be loaded from memory. This also
highlights another property of all modern CPUs which follow the von
Neumann architecture: Instructions are also data which sit in memory,
and a uniform access pattern is just as important for instructions as it is
for data. If a program contains a hotloop which makes up a large part of
the overall programs’ runtime (which is definitely the case for iterative
power flow methods), this loop should contain as few instructions as
possible in order not to overwhelm the instruction TLB.
The number of ITLB and DTLB misses is another metric which can be
measured.

Pipelining & Branch Prediction

Before an instruction can be executed, it itself and the associated data
needs to be loaded from memory (via the respective TLBs) into the

20

CHAPTER 2. COMPUTATIONAL PERFORMANCE

registers, which are the memory units closest to the actual computation
units of the CPU. The instruction then has to be decoded to set up
the FPU, is then executed and the result is written back into memory.
These are four distinctive steps (Instruction Fetch, Instruction Decod-
ing, Execution, Write Back) that have to occur in series, and each take
at least one CPU cycle [106]. However, multiple successive instructions
can be in different stages of the pipeline, so that one instruction can
finish per clock cycle. This works well as long as there are no branches,
i.e. choices between two instructions dependent on the result of a pre-
vious instruction, usually as a consequence of an if-statement or a loop
instruction in the code. In order to prevent stalling, modern CPUs
take an informed guess about the result of previous instructions and
enter the instruction they deem most likely to follow into the pipeline.
This mechanism is called branch prediction or speculative execution.
Its implementation inside the CPU has evolved from a simple state
machine [101] to a complex statistical algorithm which increasingly also
employs machine learning techniques and neural networks [117]. When
the branch prediction fails (a branch misprediction), the pipeline has to
be cleared and the new, correct, state has to be entered into the pipeline.
In order to support the branch prediction, branching code should be
laid out carefully. If-statements and loops that show regular patterns
during the execution don’t interrupt the pipeline more than necessary.
Unpredictable patterns can cause frequent CPU stalling.

Out-of-Order Execution

Another feature that differentiates modern CPUs from the processors
from a few decades ago is their superscalar nature [106]. The execution
units of the CPU that do the actual work are all highly specialized
(arithmetic logic unit (ALU), floating-point unit (FPU), load-store unit
(LSU), etc.) and would sit idle most of the time if all instructions were
processed in series. In order to use all execution units optimally, modern
CPUs internally rearrange and parallelize instructions. Instructions that
occur frequently together can even be combined into a single instruction
(µop-fusing [36]). A program that can take advantage of these capa-
bilities can be executed with more than one instruction per cycle, even
without explicit parallelization.

21

CHAPTER 2. COMPUTATIONAL PERFORMANCE

One important conclusion from these features is that computational per-
formance is different from algorithmic efficiency [99]. A good algorithmic
efficiency results in a low number of atomic, numerical operations, but
this does not directly mean the algorithm is computationally performant.
Another algorithm, which is theoretically worse, can be faster to execute
due to its better computational properties if it is better adapted to the
technologies discussed above.
One prominent example for this is the basic operation of matrix multipli-
cation: The naive implementation uses three nested for-loops, leading to
a theoretical complexity of O(n3). There are algorithms which realize a
2D matrix multiplication with algorithmic complexity O(n2.3727) (modi-
fied Coppersmith-Winograd, [122]). However, the naive implementation
is so well suited to modern CPUs that it almost always performs better
in practice, and the theoretically better algorithm is only used for special
applications with huge matrices with billions of elements.
All the features listed above lead to guidelines about how performant
programs should be designed and implemented, which are outlined in
the following section.

2.3 Guidelines for the Design of Performant
Numerical Algorithms

Optimizing code to leverage all these principles can be an arduous task
and requires knowledge of low-level programming languages and vendor-
specific functions, which severely limits the applicability to different
computational architectures. Luckily, for numerical problems like power
flow, there are libraries which provide low-level numerical vector and
matrix operations in highly optimized implementations. These libraries
are the basis of many numerical programs like MATLAB or Octave
and higher-level libraries like Numpy for Python and Boost for C++.
The oldest and most basic of these is the BLAS (Basic Linear Algebra
Subprograms), which provides routines for basic vector and matrix alge-
bra like multiplication. The name BLAS stems from a specific Fortran
library from 1979 [65], which was based on an initial specification from
1973 [43]. Over the years the actual code has been re-implemented many
times to optimize the performance on many different ISAs (Instruction
Set Architectures), but the interface, i.e. the names, functionalities,

22

CHAPTER 2. COMPUTATIONAL PERFORMANCE

and parameters of the routines remains as a de-facto standard. Today,
optimized BLAS binaries are crucial for the real-world performance of a
CPU and therefore usually maintained and distributed by CPU manu-
facturers directly.
Based on the BLAS routines, LAPACK [61] provides more high-level
matrix operations like LU-decomposition, inversion, or solution of linear
systems Ax = b, based heavily on BLAS routines. In the same vein
as the BLAS, it has been re-implemented by CPU manufacturers to
provide optimal performance, but the interface also stands as a de-facto
standard.
Today, CPU manufacturers usually provide these numerical routines
together with more mathematical functions in a unified package (Intel:
MKL [53], AMD: AOCL [5]), which makes use of special instruction
set extensions and the properties of the specific CPU architecture. The
collection of these functions defines the heavily optimized numerical
interface of the system. Figure 2.3 outlines the relationship between the
numerical packages for the example of an Intel System.

Figure 2.3: Numerical Interface and packages of modern Intel CPUs.

As a result, the functions of the numerical interface are often magni-
tudes faster than handwritten implementations, especially in high-level
languages like Python, which was used for all implementations in this
thesis. In fact, one goal during the optimization of the methods devised
in this thesis is to move as many computations as possible to MKL
functions, and implement as little functionality as possible explicitly.
That way, the performance of the runtime (CPython in this case) itself
is largely irrelevant for the computational performance.

23

CHAPTER 2. COMPUTATIONAL PERFORMANCE

For the design of the algorithms, this means that the equations should
optimally be transformed in a way that the solution uses straight vector-
matrix and vector-vector operations, and not explicit loops, maybe even
containing if-conditions (and therefore branches). This is the main goal
of the development of the power flow solution methods in Chapter 4.
All modern numerical libraries also feature routines that directly work
with complex numbers, this capability should be used for optimal per-
formance. An explicit deconstruction of complex numbers into two real
components, Cartesian or polar, should be avoided whenever possible.
In the algorithms that are outlined in Chapter 4, most operations are
performed with complex numbers, and the pseudo-code assumes that a
numerical library with appropriate capabilities is used.
From an architecture standpoint, the program should keep the number
of instructions per function low (in order to not overwhelm the ITLB
cache) and data access uniform. In practice, this can only ever be
achieved for small sections of the entire program. However, a power flow
simulation involves a lot of code that is usually not performance-critical,
like loading and parsing input data and evaluating the output. It is
worthwhile to logically push complex and ’messy’ operations into those
sections, so that the performance-critical core can perform at its best.

2.4 Benchmarking Methodology
The elaborate optimization schemes of modern CPUs also have interest-
ing consequences for the measurement of computational performance.
Although the results of a program are usually deterministic, the runtime
of the program is not. The runtime is influenced by many factors out-
side the programmers control: The operating system runs a multitude
of programs concurrently and divides up the processing time between
them, using a scheduling mechanism which can be unpredictable. The
CPU itself can change its clock frequency due to thermal restrictions.
The initial placement of the data in memory can line up favorably in one
run and less favorably in the next. When data has already been placed
in a cache, execution times can be much faster in subsequent runs.
All this means that the simplest indicator of performance, the wall time
(time elapsed in the real world), is not always a reliable and transferable
indicator of performance. This problem is sometimes sought to alleviate
by using the number of CPU instructions, or the number of FLOPs

24

CHAPTER 2. COMPUTATIONAL PERFORMANCE

(Floating Point Operations) per second. However, these measurements
are not suitable for modern CPU architectures - CPU stalls and cache
misses can cause otherwise identical instructions to have wildly different
execution times, so these metrics can, in fact, ’hide’ a bad implemen-
tation. Additionally, a precise measurement of the number of FLOPs
on the CPU via instruction counters is not easily possible. Floating
point operations are contained in many vectorized instructions from
instruction set extensions such as SSE and AVX, which can execute a
variable number of individual FLOPs in one instruction.
A software-implemented version of FLOP measurement was briefly in-
cluded in MATLAB until it was removed in 2000 because it delivered
wildly incorrect and practically useless results [116][93]. FLOP counts
were therefore used in some papers in the 90s as proxies for performance
[126], but these results were questionable at the time and are not appli-
cable today.
In this thesis, the methods developed in Chapter 4 are first evaluated in
detail in section 4.5 using the performance metrics established in section
2.2. In the later chapters, the wall time is used as the only performance
metric. In order to minimize all disturbing influences, all non-essential
processes were terminated prior to running the benchmarks. The clock
speed was monitored through all tests to ensure that the CPU does not
throttle and put later tests at a disadvantage.
Technically, all the benchmarks use the UNIX system call gettimeof-
day() either directly or via the Python time module which provides
a microsecond accuracy. Unless otherwise stated, all benchmarks are
performed on a standard Intel NUC 7i5 BNK with the specs outlined in
table 2.1.

Table 2.1: Specification of the computer that was used for all benchmarks,
unless otherwise specified

CPU Intel Core i5-7260U @ 3.4 GHz
RAM 8 GB DDR4 @ 2400 MHz
HD 256 GB SSD Samsung 860 Evo

The CPU was released in early 2017, and it represents commodity hard-
ware that is representative of standard office computer, not a specialized
high-performance system.

25

CHAPTER 2. COMPUTATIONAL PERFORMANCE

The software stack is standard for a Python/Numpy environment in
2019, the main software packages used are shown in table 2.2.

Table 2.2: Software versions used for the benchmarks in this thesis

Software Version
Linux Kernel 4.15.0-76-generic
OS Linux Mint 19
CPython 3.7.6
Numpy 1.17.3
MKL 2019.4
Numba 0.47.0
LLVM 8.0.1

26

Chapter 3

Principles of Power Flow
Computations

In this chapter, the formulation of the power flow problem is revisited, in-
cluding the formation of the grid model, and the considerations that lead
to that specific model. A simple example grid is defined and its power
flow model is derived in detail. The formulation in terms of vectors and
matrices is introduced, which is crucial for the design of computationally
performant solution methods in Chapter 4. The handling of slack nodes
is presented in a separate section, as well as the possible convergence
criteria that indicate a correct power flow solution.

3.1 The Power Flow Model
The foundation of any power flow model is the equivalent electrical
circuit of the considered power grid. The formulation of the equivalent
circuit transforms the real-world physical problem of electrical quanti-
ties into a mathematical model. As with all mathematical models of
real-world systems, there are considerations to be made about which
physical effects to take into account and which ones to ignore or simplify.
If all known physical effects were fully considered, the result would be a
mathematical model of fantastical complexity. In contrast, a simplistic
model might not be useful if it does not mirror the relevant characteris-
tics of the real-world system.
A power flow model therefore needs to strike a balance between com-

27

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

plexity and computability. In general, the complexity of the model needs
to be as low as possible, but as high as necessary, whereas the com-
putability needs to be as high as possible, but as low as necessary.
The required complexity of a power flow model is directly related to the
requirements of the simulation it is used in. Large-scale economic stud-
ies frequently use simple grid models, modeling entire regions as single
nodes or ignoring line impedances altogether (”copper plate”). On the
other hand, simulations which examine the reliability of individual grids
under stress or before major switching operations use more complex grid
models which contain every single line and grid element.
The computability of a model can be a problem either due to the required
computational effort or, more frequently, due to a lack of appropriate
input data. For instance, the temperature of a conductor affects its
resistance, and so this is one of the physical effects that influences the
power flow (and the power flow in turn influences the temperature,
which further complicates matters). The complexity of considering this
in the mathematical model is manageable, but the correct ambient tem-
perature data and material parameters are rarely available. In fact,
even the base resistance of a line is mostly just estimated using its
length and ratings, ignoring influences like contact resistances, material
imperfections and ageing. In most situations, the consideration of tem-
perature dependency would therefore only consider a minuscule effect
on a quantity that is not precisely known anyway.
This problem occurs with many of the physical effects that could be
taken into account. The usefulness of many complicated models is
severely limited by the availability and precision of the necessary input
data. The data that is available is usually the impedances of the lines
and the loads at the nodes in terms of powers. A ’normal’ power flow
model therefore takes exactly these values into account.
In many practical simulations, this is acceptable, because the purpose
of power flow computations is hardly ever to achieve perfectly accurate
results on the basis of perfectly available input data. The purpose of
most power flow computations is the discovery of trends, the investiga-
tion of worst-case situations or the comparison of scenarios concerning
generation, consumption, or grid expansion.
In these practical investigations, the actual power flow computations
often make up only a part of the simulation. The input data, like im-
pedances Z, powers S and the slack voltage(s) U0 can be the result of
measurements, assumptions, predictions, or statistical considerations.
They might represent a real, past or momentary situation or an as-

28

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

sumed situation in a near or far future. The output of the power flow
computation is just the vector of voltages U. The currents I flowing
through the lines and the power flowing through the transformer S0
can be computed from those. The consequence of the simulation then
depends on those values and can be an immediate action, a long-term
strategic decision or just a statistic. This chain of steps with the power
flow computation at its center is outlined in Figure 3.1. A frequent sub-
sequent processing step is the determination of compliance, i.e. a check
if all voltages and currents are within the bounds of the applicable norms.

Figure 3.1: Logical Structure of Power Flow Computations

In order to introduce the basic notion of a power flow problem and es-
tablish the notation and conventions used in this thesis, a very simple
three-node power flow problem is described in the remainder of this sec-
tion.
Consider the electric grid symbolically pictured in Figure 3.2. Two
household consumers are connected to the low voltage grid, which is
connected to the overlaying medium voltage grid via a transformer.

Figure 3.2: Transformer station with two households connected by cables

This is one of the simplest possible grid configurations and it yields
one of the simplest power flow problems. However, it highlights which
electric effects are usually ignored or simplified in such simple compu-
tations. In order to construct the mathematical model of this grid, the
following assumptions are made:

29

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

Steady State

The power flow computations discussed in this thesis all deal with the
steady state, which means that all currents, voltages, and powers are
assumed to be perfectly sinusoidal with a fixed frequency and therefore
defined by their RMS value and phase angle. All currents, voltages, and
powers in this thesis are expressed in terms of those two components as
complex numbers, unless otherwise stated. Under this assumption, the
complex power is S = U I∗. Effects like harmonics or transient volt-
age changes are not taken into account and the models and algorithms
described in this thesis are not suitable to deal with them without mod-
ifications.

Loads

The household loads are all modeled as a fixed complex power S =
P + jQ. This is not entirely correct for e.g. simple heating elements,
which, barring temperature influences, have a fixed impedance or LED
lighting, which are constant current sinks. However, a major reason to
use fixed power is again the availability of data compared to current or
impedance, because power is what is actually measured and billed in all
residential, commercial, and industrial buildings. In reality, these usually
represent many individual loads with complex behaviors under voltage
changes, often employing a mix of all three characteristics (constant load,
constant current, constant impedance). If the data is available, this can
be accounted for by using ZIP load models (see section 4.6.1).

Slack Node

The supplying transformer is modeled as a slack node, an ideal volt-
age source with a given, fixed RMS value and angle. It represents the
transformer, the supplying medium voltage grid and all other connected
electric grids. In reality, the current drawn by the grid influences the
transformer and the connected grids, but in the model, this is usually
neglected. Therefore, all calculated voltage drops have to be seen in re-
lation to the slack node. This is acknowledged in many grid regulations
which specify a tolerated voltage drop relative to the source voltage at
the transformer.

30

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

Line Model

The impedances and capacitances of overhead lines and cables are sim-
plified. In theory, the line properties are in effect at every infinitesimal
piece of the line, which is reflected by the telegraphers’ equations [75].
These are a system of partial differential equations with electrical quanti-
ties expressed as dependent both on time and location on the line. Short
of electrodynamic finite element simulations, they represent the most
sophisticated model of electric transmission. But even with the assump-
tion of steady-state voltage and current, the resulting equations are too
complex for the use in power flow computations, and the potential gains
in accuracy are often completely overshadowed by the uncertainty in the
values of the given impedances. Lines are therefore usually modeled as
one impedance, with stray capacitances distributed onto the endpoints,
if available. This leads to the Π-line model shown in figure 3.3.

Figure 3.3: Individual line model

In low voltage grids, the parallel reactances are usually neglected, so
that a single impedance Z = R + jX per phase remains. For the electric
grid pictured in Figure 3.2, the assumptions of steady state, the repre-
sentation of the transformer as a slack node, the assumption of loads as
constant power sinks and the simplified line model yields the three-phase
equivalent electrical circuit pictured in Figure 3.4.

Symmetry

Under the additional assumption of symmetry, the three-phase system
can be further reduced to a one-phase system without any loss of in-
formation. The three-phase system is said to be symmetric when the
impedances of the lines are identical (which is usually the case in all
grids), and the loads at the nodes are the same for all three phases
(which is usually approximatively the case in HV and MV grids, but not
necessarily in LV grids). In this case, the currents in the neutral con-

31

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

Figure 3.4: Equivalent circuit for the grid pictured in Figure 3.2 under the as-
sumption of steady-state, representation of household loads as constant power
sinks, the transformer as a constant AC voltage source, and the lines as single
impedances

32

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

ductor add up to zero and its impedance can be neglected. The result is
a model as pictured in Figure 3.5.

Figure 3.5: Equivalent circuit of the grid in Figure 3.2 under the additional
assumption of symmetry

The final step of the power flow model formulation is the translation of
this electrical circuit into a mathematical model to which the solution
methods can be applied. In order to derive a mathematical model from
any electrical circuit, one of the two Kirchhoff laws has to be employed.
The application of Kirchhoff’s Current Law (KCL), which states that all
currents flowing into or out of a node of an electric network must sum up
zero, gives rise to the YBUS formulation of the power flow model, which
is developed in the next section.
In theory, it is also possible to construct a valid power flow model start-
ing from Kirchhoff’s Voltage Law (KVL), which leads to the YLOOP
formulation of the power flow model [102]. This formulation was used in
the earliest power flow computations, but it proved to be very compli-
cated for meshed networks. After the first experiences with power flow
computations, it quickly became apparent that the YBUS formulation
is the superior method for systematically setting up the mathematical
power flow model.

3.2 The YBUS Formulation of the Power
Flow Model

Figure 3.6 pictures the same equivalent circuit as Figure 3.5, but shows
only the mathematically relevant parts together with the occurring cur-

33

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

rents and voltages. The constant power sinks are represented as current
sinks, where the current depends on the voltage at the node.

Figure 3.6: Reduced diagram of the equivalent circuit with occurring voltages
and currents

Among these values, the impedances Z01 and Z12, the powers S1 and
S2, and the slack voltage U0 are known, the rest are unknown. The goal
of the power flow computation is the calculation of U1 and U2, from
which the unknown currents in the circuit can be computed.
The application of Kirchhoff’s current law (

∑
I =0 ⇒ Iin = Iout) to the

nodes 0, 1, and 2 in the equivalent circuit in Figure 3.6 yields

0 = I0 + I01

I01 = I1 + I12

I12 = I2

(3.1)

or, reordered to separate the load currents I0, I1, and I2:

I0 = −I01

⇒ I1 = I01 − I12

I2 = I12.

(3.2)

The ultimate goal of the following operations is to transform these equa-
tions so that they contain the known quantities, the power at the nodes
S and the impedances Z as well as the desired result, the voltages at
the nodes U . It should also be possible to set up the equations in a
systematic and automated fashion.

34

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

The impedances and voltages are directly related to the currents over
the lines I01 and I12 by Ohm’s law:

I01 = U0 − U1
Z01

I12 = U1 − U2
Z12

.

(3.3)

For the model formulation, it is more practical to express the line im-
pedances Z as line admittances Y = 1/Z, because a missing line can
then easily be described as having an admittance of 0. An impedance
of infinity is hard to work with numerically, and would have to be spe-
cially accounted for in the equations and the solution algorithms. The
substitution of Y = 1/Z yields

⇒ I01 = Y 01 (U0 − U1)
⇒ I12 = Y 12 (U1 − U2) .

(3.4)

In order to group the voltages as a separate vector, the equations are
reordered as

⇒ I01 = Y 01U0 − Y 01U1

⇒ I12 = Y 12U1 − Y 12U2.
(3.5)

Equations 3.5 can now be inserted into equations 3.2, relating the load
currents to the voltages and impedances:

I0 = − (Y 01U0 − Y 01U1)
I1 = (Y 01U0 − Y 01U1) − (Y 12U1 − Y 12U2)
I2 = (Y 12U1 − Y 12U2) .

(3.6)

By reordering the terms and sorting by the voltages, the final matrix-
vector structure of the equations becomes visible:

⇒
I0

I1

I2

=
=
=

−Y 01 U0 +Y 01 U1

Y 01 U0 − (Y 01 + Y 12) U1 +Y 12 U2

Y 12 U1 −Y 12 U2.

(3.7)

35

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

Expressed with matrices and vectors, the equations consist of a current
vector, a voltage vector, and a symmetric admittance matrix:

⇒

I0

I1

I2

 =

−Y 01 Y 01 0
Y 01 − (Y 01 + Y 12) Y 12

0 Y 12 −Y 12

U0

U1

U2

 . (3.8)

The symmetric admittance matrix in equation 3.8 encodes the entire
information about the modeled electric grid, including the topology and
the values of the individual lines in one structure. This is important
for the efficient power flow solutions later, as this matrix has to be con-
structed only once for each individual grid configuration.
For other grid topologies, the admittance matrix can be set up directly,
by employing a simple procedure:

1. If nodes i and j are connected by a line with admittance Y ij , enter
this value into positions ij and ji in the matrix. Repeat for all
lines.

2. Set the diagonal of the matrix, the positions ii, to the negative of
the sum of the corresponding line i in the matrix.

This procedure will yield the admittance matrix even for larger, more
complicated meshed grids. The following steps can then be carried out
as explained here for the simple three-node grid.
As the complex power S of an individual node is defined by S = U I∗,
the power can be incorporated into Equation 3.8.
Again, this step is only necessary because S is usually a value that is
readily available, whereas the current I is not. This is especially true for
the complex parts: Active and non-active power are routinely measured
and recorded, the phase angle of the current in relation to the voltage,
which would be required here, is not.
After introducing S, the resulting equation is now non-linear with respect
to U :

⇒

S∗
0/U∗

0

S∗
1/U∗

1

S∗
2/U∗

2

 =

−Y 01 Y 01 0
Y 01 − (Y 01 + Y 12) Y 12

0 Y 12 −Y 12

U0

U1

U2

 . (3.9)

36

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

The voltage can be transferred to the right side using the Hadamard
product, which represents the element-wise multiplication of two vectors:

⇒

S∗
0

S∗
1

S∗
2

 =

U∗
0

U∗
1

U∗
2

 �

−Y 01 Y 01 0
Y 01 − (Y 01 + Y 12) Y 12

0 Y 12 −Y 12

U0

U1

U2

 . (3.10)

Finally, the complex conjugate is usually switched, which is possible
because of the involutory property of the complex conjugate:S0

S1

S2

 =

U0

U1

U2

 �

−Y 01 Y 01 0
Y 01 − (Y 01 + Y 12) Y 12

0 Y 12 −Y 12

∗ U0

U1

U2

∗

. (3.11)

The same equation in vector-matrix notation is

S = U � Y∗ U∗. (3.12)

This formulation is known as the YBUS formulation of the power flow
model [102]. The equation contains the vector of complex powers S,
the admittance matrix Y, and the vector of voltages U. The task of
power flow computations is now the calculation of a voltage U for given
complex power S and admittance matrix Y.

3.3 Handling of Slack Nodes

Slack nodes in power flow computations are nodes for which a fixed
voltage amplitude and angle is specified, instead of an active and reactive
power. Mathematically, they represent a boundary condition for the
voltages in the grid. Without such a condition, there would be an infinite
number of solutions for the power flow, and the problem as formulated
by equation 3.11 would not be well posed. Intuitively, such a power flow
problem does not contain any information about the voltage level of the
grid at all. At least one slack node is required in every classical power
flow computation. From the point of view of electrical engineering, slack
nodes serve three purposes:

37

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

• They anchor the voltage of other nodes with their constant voltage
amplitude, which is invariant to changes in current flows or voltage
amplitudes at other nodes. The voltages of slack nodes therefore
define the actual voltage level a grid is on.

• Because of the constant voltage angle, they provide the angle
reference. As the voltage angle is a relative property, a voltage
angle can never be evaluated in isolation. It only has meaning as a
voltage angle difference between two nodes. There is no inherent
absolute voltage angle in any node in a grid, so one has to be
arbitrarily provided.

• Because of their unspecified power, they provide the power balance
in the grid by compensating for the mismatch of consumption and
generation of active and reactive power.

Slack nodes are a ”fictitious concept” [104] and have no perfect equiv-
alent in the real world. However, in real world problems, the role of
slack node has to be taken by real grid elements. Plausible choices are
dependent on the type of grid:
In most low and medium voltage distribution grids, the supply of the
grid is usually handled by one single transformer, which naturally acts as
the single slack node of the grid. It is technically plausible that this node
has a constant voltage, provides a voltage angle reference, and delivers
or consumes the power mismatch. In fact, a single supplying transformer
would not be modeled any other way.
In high voltage distribution grids, it is common to have several supplying
transformers at different points in the grid and therefore a necessity to
compute power flow problems with multiple slack nodes. This is possi-
ble, but it can complicate the handling of the power flow equation and
its solution considerably. Section 4.6.2 is dedicated to the solution of
power flow problems with multiple slack nodes. Many papers on power
flow and available power flow programs do not take multiple slack nodes
into account.
In transmission grids, the situation is fundamentally different, as there
are no supplying transformers fed from an overlaying grid. The role of
slack node in these grids is different and motivated by the mathematical
necessity rather than a sensible technical equivalent. Power stations in

38

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

transmission grids are usually modeled as generator nodes, a third type
of node which provides voltage magnitude anchoring through a given
voltage magnitude and active power. The slack node is therefore only
necessary as a voltage angle reference and for power mismatch compen-
sation. One of the generators has to be ’promoted’ to be the slack node,
which ’trades’ its given active power injection for a constant voltage
angle. A single node with a strong generator has to be chosen as slack,
although the balancing of load and generation is the task of all controlled
generators in the grid. This can be accounted for in an outer optimiza-
tion loop, which distributes the load mismatch at the single slack node
to multiple other nodes which are modeled as load or generator nodes
[104].
Distribution grids which are islanded and supplied by distributed gener-
ation pose the same problem concerning suitable slack nodes, so research
around this topic has arisen with the increased interest around micro-
grids [92], [59].
In order to account for slack nodes in power flow methods, the equations
themselves or the solution method must ensure that during the solution
of the power flow, the voltage of the slack node or nodes never changes.
For the YBUS formulation, there are two ways of incorporating a slack
node and keeping its voltage invariant directly in the power flow model:

Slack Handling - Option 1

Assuming a slack node at index 0, if the entire line of the admittance
matrix Y and the corresponding entry of S is changed as in equation
3.13, the voltage U0 becomes invariant:(U∗

0U0)/U∗
0

S∗
1/U∗

1

S∗
2/U∗

2

 =

 1 0 0
Y 01 − (Y 01 + Y 12) Y 12

0 Y 12 −Y 12

U0

U1

U2

 . (3.13)

Mathematically, by setting S0 = U∗
0 U0, the first line of this equation

resolves to U0 = U0 and will therefore be solved by any value of U0 ∈ C.
In the iterative solution schemes that are presented in Chapter 4, the
initial guess will fix U0, and repeated iterations to find a solution to
equation 3.13 will always yield the initial value of U0. As the size of the
matrix is unchanged, all other vectors like U and S also remain the same
size. Because resizing matrices and vectors is a memory-intensive task,
this option is preferred and used throughout the thesis, unless otherwise

39

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

stated.
There seems to be no precedent for this method in the literature, and
none of the freely available implementations use it.

Slack Handling - Option 2

The line corresponding to the slack node can also be deleted from equa-
tion 3.9, yielding equation 3.14.

[
S∗

1/U1
∗

S∗
2/U2

∗

]
=

[
Y 01 − (Y 01 + Y 12) Y 12

0 Y 12 −Y 12

] U0

U1

U2

 . (3.14)

As U0 does not appear on the left side of the equation anymore, it
is guaranteed to stay constant. From a performance standpoint, this
method has the theoretical advantage of fewer computations due to
the missing terms, but the major disadvantage that two versions of the
voltage vector U, one with and one without U0 have to be stored and
synced throughout the computation. In addition, this version of the
admittance matrix Y can not be inverted.

3.4 Convergence Criteria
The nonlinear equations that arise from the power flow model can usually
not be solved directly in a closed form. Instead, a solution is reached iter-
atively, which requires a criterion of convergence, or breaking or stopping
condition, to decide when the result is sufficiently precise and acceptable
as a solution. There are three main possible convergence conditions [63]:

Option 1: Power Residual

The power residual S(m)
R of a solution candidate in the mth iteration

U(m) is

S(m)
R = S − U(m) � Y∗U(m)∗. (3.15)

Intuitively, this power residual is the discrepancy between the given pow-
ers at the nodes, and the powers that would be delivered to the nodes

40

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

when U(m) is applied to the network. One possible convergence criterion
is then

‖S(m)
R ‖max < εS (3.16)

where εS ∈ R is the convergence threshold and ‖·‖max is the maximum
norm (also called infinity norm), which represents the entry inside the
vector with the greatest absolute value. Another possible convergence
criterion is

‖Re(S(m)
R)‖max < εP ∧ ‖Im(S(m)

R)‖max < εQ (3.17)

with separated real and imaginary parts.
The power residual can be directly related to the given powers at the
nodes which are input variables to the computation. It makes sense to
adjust the convergence criterion according to the precision of the input
power S. If S is given as integers, it makes sense to choose εS = 1 VA
and not εS = 0.001 VA.
The power residual therefore can bring the computing precision in line
with the data precision, which allows for an informed choice of the con-
vergence condition.
The simple criterion 3.16 is used for all power flow computation in this
thesis. For the sake of completeness, the other two possible convergence
criteria are described below.

Option 2: Current Residual

Another, closely related convergence criterion uses the current residual

I(m)
R = S∗

U(m)∗ − Y U(m), (3.18)

which leads to the convergence criterion

‖I(m)
R ‖max < εI . (3.19)

The current residual is obviously closely related to the power residual.
For the same power flow problem, the two are approximately inter-
changeable via the relationship

εI = εS

|U0|
. (3.20)

41

CHAPTER 3. PRINCIPLES OF POWER FLOW COMPUTATIONS

The only reason to use the current residual is that IR occurs as an
intermediate result during the computation of the Jacobi method as de-
scribed in section 4.1 and can be directly used for the comparison with εI .

Option 3: Voltage Step

The last option for a convergence criterion uses the voltage step

∆U(m) = U(m) − U(m−1), (3.21)

i.e. the difference in voltage between two iterations. This leads to the
convergence criterion

‖∆U(m)‖max < εU . (3.22)

Checking for the step size of the solution variable between iterations is
a generally applicable convergence criterion in numerics and is related
to the Cauchy convergence test for infinite series. It is usually only used
when no other alternative method is available.
This condition is much harder to relate to the other two residuals, as
the size of the voltage step does not generally signify convergence to the
solution. It could also be a local phenomenon far away from the actual
solution. However, a small enough ∆U(m) usually indicates that the
solution is close to convergence. Also, the choice of εU does not directly
relate to the precision that the iterations ultimately achieve. When
convergence according to this criterion has been reached, the actual,
precise solution might still be more than εU away.

42

Chapter 4

Power Flow Solution
Methods

Based on the YBUS formulation, six power flow solution methods are
presented in this chapter. This includes the mathematical derivation,
the development of optimized algorithms formulations and a discussion
about the general properties of the methods. The focus is always on the
computational performance, as outlined in Chapter 2. This means that
the mathematical formulations are at times not the most elegant nor the
most straightforward. The presented methods can be divided into three
classes:

1. The YBUS Jacobi, Gauss-Seidel, and Relaxation methods arise
from a common fixed-point approach. They are computationally
simple but algorithmically inefficient.

2. The YBUS Newton-Raphson method arises from a root-finding
approach to the power flow equations. It is computationally more
complex but algorithmically more efficient.

3. The ZBUS Jacobi method is another fixed-point method using an
inverted admittance matrix. It can be potentially both algorithmi-
cally and computationally efficient. The Backward-Forward sweep
method can be seen as a special type of ZBUS method where, in
the case of a single-feeder grid, all the computations can be done

43

CHAPTER 4. POWER FLOW SOLUTION METHODS

using vector algebra.

Most reported ’novel’ power flow computation methods can be traced
back to these three classes of methods. The relatively new and unique
’holomorphic embedded load flow’ (HELM) [111], [112], [91], is not dis-
cussed, as its computational speed is reportedly not competitive [96].
A number of complications in grids or the attached elements are also
presented and their influence on the power flow model and solution
methods as well as the impact on performance is discussed.
Finally, the topic of convergence including the mathematical back-
ground, reasons for divergence and possible remedies are discussed.

4.1 YBUS Fixed-Point Methods

4.1.1 Principle
The family of YBUS fixed point methods is the most straightforward
solution method for the YBUS equations. In principle, they all consist of
iterative update steps to the individual nodes, where the voltage of each
node is temporarily brought into harmony with the conditions induced by
the given powers, until the entire voltage profile satisfies the convergence
criterion.
Mathematically, the solution methods can be directly derived from the
original YBUS formulation. Starting with equation 3.9, it is possible to
reformulate the first line as follows:

S∗
0

U∗
0

= −Y 01U0 + Y 01U1 (4.1)

⇒ −Y 01U0 = S∗
0

U∗
0

− Y 01U1 (4.2)

⇒ U0 = 1
−Y 01

(
S∗

0
U∗

0
− Y 01U1

)
. (4.3)

In the last equation, U0 is isolated on the left side, but the right side still
contains it. The other two lines in equation 3.9 can be reformulated ac-
cordingly, isolating U1 and U2, respectively. A formulation like this, or
generally of the form x = f(x), lends itself to a solution with fixed point
iterations, which follow a simple scheme, where, after an initial guess
x(0), the equation x(m+1) = f(x(m)) is solved repeatedly for x(m+1) un-

44

CHAPTER 4. POWER FLOW SOLUTION METHODS

til a predefined convergence condition (see section 3.4) is met.
The theoretical conditions for convergence of general fixed point meth-
ods are given by the Banach fixed point theorem, which for this problem
states that the method converges linearly if, among other conditions,
f(x) is a contraction mapping. For most practical power flow problems
in distribution grids, convergence itself is not a problem. In the situa-
tions where it is, a multitude of techniques [2],[80] and entirely different
algorithms [111] are available.
The general fixed point formulation for the YBUS formulation of a power
flow problem with n nodes is

U i = 1
Y ii

 S∗
i

U∗
i

−
n∑

j=1
j 6=i

Y ijU j

 ∀ i = 1 . . . n. (4.4)

Computationally, this equation is not very elegant, as it requires a loop
for the sum and an additional condition to handle the exception for
j 6= i. In a practical program, this would result in poor CPU utilization
due to the branches and inevitable cache and branch misses. A better
formulation can be reached by transforming the vectors S and U and
the matrix Y to contain those loops and exceptions implicitly in vector-
vector and vector-matrix operations.
Starting with equations 4.4, there are two ways to achieve this:

Vectorization - Option 1
First, equation 4.4 can be augmented with effectively 0 as follows:

U i = 1
Y ii

 S∗
i

U∗
i

−
n∑

j=1
j 6=i

Y ijU j

 −
(

Y iiU i

Y ii

)
+

(
Y iiU i

Y ii

)
∀ i = 1 . . . n.

(4.5)

The negative augmenting term then corresponds exactly to the term
that is excluded in the sum and eliminates the exception for j = i. The

45

CHAPTER 4. POWER FLOW SOLUTION METHODS

positive term remains. Y ii can be eliminated and the entire term can be
pulled to the front:

U i = U i + 1
Y ii

 S∗
i

U∗
i

−
n∑

j=1
Y ijU j

 ∀ i = 1 . . . n. (4.6)

Using the diagonal of the admittance matrix Y as the vector Ydiag, this
equation can be vectorized and put into an iterative form as

U(m+1) = U(m) +
((

S∗ � U(m)∗ − Y U(m)
)

� Ydiag

)
. (4.7)

Vectorization - Option 2
Alternatively, the condition for i 6= j can be eliminated by applying the
substitutions

Ŷ ij =

{ Y
ij

Y
ii

, if i 6= j

0, if i = j
∀ i, j = 1 . . . n, (4.8)

and

Ŝi = S∗
i

Y ii

∀ i = 1 . . . n. (4.9)

Both of these substitutions can be applied before any other computations
take place.
The fixed point formulation can then be expressed as

U i = Ŝi

U∗
i

−
n∑

j=1
Ŷ ijU j ∀ i = 1 . . . n, (4.10)

which can also be expressed in a vectorized form as

U(m+1) = Ŝ � U(m)∗ − Ŷ U(m). (4.11)

The first option introduces the vector Ydiag ∈ Cn, but otherwise pre-
serves the structure and contents of all other variables. The easier
handling compared to option 2 gives option 1 a practical advantage.
The additional addition and Hadamard division do not result in a
measurable performance difference, probably because the runtime is
dominated by the matrix-vector multiplication Y U(m). Therefore, all

46

CHAPTER 4. POWER FLOW SOLUTION METHODS

algorithms devised and used in this chapter use option 1.
The vectorized fixed-point formulation in equation 4.7 can now be solved
with a multitude of so called splitting methods. In the following sections,
the Jacobi method, Gauss-Seidel method and the Relaxation method are
presented and discussed.

4.1.2 The YBUS Jacobi Method
The Jacobi Method (also called the Gauss iterative method in [102], al-
though no such ’Gauss method’ exists) is the simplest and most straight-
forward solution method for the YBUS fixed point formulation. It consists
of the iterative solution of the fixed-point equation in unchanged order.
After one iteration, where every U i has been updated once, the conver-
gence has to be checked using any of the three methods (see section 3.4),
and the iteration loop can be exited when convergence is reached.
The YBUS Jacobi method can profit from the first vectorization option
using equation 4.7, because the equation

U(m+1) = U(m) +
((

S∗ � U(m)∗ − Y U(m)
)

� Ydiag

)
explicitly contains the current residual

I(m)
R = S∗ � U(m)∗ − Y U(m). (4.12)

I(m)
R can therefore be precomputed as an intermediate result to be used

in the ongoing iterations as well as the convergence criterion. This leads
to algorithm 1, which describes the YBUS Jacobi method in terms of
only vector-vector operations and one matrix-vector multiplication. It
contains no branches except for the inevitable convergence check.
The algorithm consists of the allocation of Ydiag in line 1, which is
required only once per grid, and an explicit iteration loop containing the
precomputation of IR in line 3, the convergence criterion in lines 4 and
5, and the voltage update step in line 6.
If the check for the convergence criterion was conducted in the head of
a while loop, the residual current IR would have to be initialized to a
”safe” value, e.g. IR,i = 2ϵsU

(0)
i ∀i. Also, this formulation with the

separate breaking condition offers the fastest possible code path in a
case where the voltage is already in a converged state.
The inner iteration loop of the algorithm (lines 3-6) contains only one

47

CHAPTER 4. POWER FLOW SOLUTION METHODS

Algorithm 1 YBUS Jacobi method

Input: Y, S, U(0), ϵS

1: Ydiag = diag(Y)
2: loop
3: IR = (S � U)∗ − Y U
4: if ‖I∗

R � U‖∞ < ϵS then
5: break loop
6: U = U − IR � Ydiag

return U

matrix-vector multiplication, two element-wise vector divisions and two
vector subtractions per loop and contains only five variables, three of
which (S, Y, Ydiag) don’t change between iterations. The If-condition
leads to one branch per iteration.
Due to the sparse nature of the admittance matrix Y, the Jacobi method,
like all YBUS fixed point methods, is a local voltage update method in the
sense that in each step, the voltage at a node can only be influenced by
adjacent nodes. In practice, this means that information about voltage
changes has to be ’propagated’ through the network, moving at one
node per iteration. Figure 4.2 shows the voltage profiles of the first 4
iterations for a very simple problem shown in Figure 4.1 which highlights
the propagating voltage updates. The example grid is similar to the
minimal example in section 3.1, but contains one more node and one
more line.

Figure 4.1: Example grid and load scenario for the investigation of the general
iteration behavior in Figures 4.2, 4.3, 4.4, 4.5, 4.6, and 4.8.

Iteration 0 shows the initial values for U, a ’flat start’ with all voltages
set to U = U0 = 400V, the slack voltage. Because the load only affects
one node, in this case node 3, the first iteration leads to a voltage update
at only that node. In the second iteration, the voltage at the adjacent
node 2 is updated, and in the third, the voltage node 1 is updated

48

CHAPTER 4. POWER FLOW SOLUTION METHODS

Figure 4.2: Voltage profiles of the first 4 iterations of the YBUS Jacobi method
for a single feeder grid in Figure 4.1. The final solution is shown as the dashed
green line.

for the first time together with node 3, which is adjusted because its
’local reference voltage’ at node 2 changed. For ϵS = 1 VA, the method
converges after 39 iterations. The example single feeder grid represents
a worst-case situation for the Jacobi method, but the same effect leads
to high iteration numbers in many situations, especially in large grids
with some nodes with very high loads.
The computational performance of the method can be further analyzed
by laying out the indivual operations that occur during an iteration in
terms of BLAS, LAPACK, and MKL VM routines. Table 4.1 shows all
numeric routines that are called by the YBUS Jacobi method. Futher
details about the routines can be found in Appendix A.

49

CHAPTER 4. POWER FLOW SOLUTION METHODS

Table 4.1: Numerical routines and FLOP estimates for the YBUS Jacobi
method.

Line Operation Numerical
Interface Numerical Routine Total FLOPs Est.

1 Ydiag = diag(Y) −
3 Y U LAPACK zgemv() 12n2

3 S � U MKL VM vzDiv() 11n

3 (⋆)∗ LAPACK zlacgv() n

3 ⋆ − ⋆ MKL VM vzSub() 2n

6 IR � Ydiag MKL VM vzDiv() 11n

6 U − ⋆ MKL VM vzSub() 2n

Inner Loop: 12n2 + 27n

Computationally, the time per iteration is the lowest of all methods in
this thesis. There are comparatively few operations, and the matrix-
vector multiplication in line 3, which dominates the theoretical FLOPs
count, contains a high number of zeroes that get immediately resolved
in the FPU. The copy operation in line 1 has no FLOPs associated to it
and occurs only once for every grid.

4.1.3 The YBUS Gauss-Seidel Method
The Gauss-Seidel method is an algorithmic refinement of the Jacobi
method. Instead of updating the entire voltage vector U all at once af-
ter a complete iteration through all lines, the respective value is changed
immediately in U and is used for the computations of the following lines.
The iteration rule for the YBUS Gauss-Seidel method is

U
(m+1)
i = U

(m)
i + 1

Y ii

 S∗
i

U
(m)∗
i

−
i−1∑
j=1

Y ijU
(m+1)
j −

n∑
j=i

Y ijU
(m)
j

(4.13)

∀ i = 1 . . . n.

In a practical program, the Gauss-Seidel method is implemented with
an explicit inner loop which updates one entry of the vector U during
every pass. The Gauss-Seidel method is more algorithmically efficient
than the Jacobi method, but this inner for-loop is a problem for the

50

CHAPTER 4. POWER FLOW SOLUTION METHODS

computational efficiency of the method in practice (see section 4.5).
Algorithm 2 shows the algorithm for YBUS Gauss-Seidel using the power
residual as a convergence criterion.

Algorithm 2 YBUS Gauss-Seidel method

Input: Y, S, U(0), ϵS

1: while ‖U � (Y U)∗ − S‖∞ > ϵS do
2: for i=1...n do
3: U[i] = U[i] − (Y[i, :] · U[:] − (S[i]/U[i])∗)

return U

In this algorithm, the convergence criterion is evaluated in the head of
a while-loop, because no part of the convergence check can be precom-
puted.
The notation in line 3 follows the notation in Python and its numerical
library Numpy, where U[i] means ”the ith entry of vector U”, and Y[i, :]
means ”the complete ith line of matrix Y”.
Compared to the Jacobi method, every individual iteration is more ef-
fective, but computationally slower.
Figure 4.3 shows the voltage profiles afters each of the first four itera-
tions of a trivially simple power flow problem with only on load at node
3, analogous to Figure 4.2.

Figure 4.3: Voltage profiles of the first 4 iterations of a YBUS Gauss-Seidel
method for a single feeder grid, 4 nodes, 400 W of load applied to the node 3.
The final solution is shown as the dashed green line.

51

CHAPTER 4. POWER FLOW SOLUTION METHODS

Each iteration of the YBUS Gauss-Seidel method is more effective than
those of the YBUS Jacobi method - after four iterations, the voltage
profile is closer to the eventual solution. Notably, the voltage at node
3 changes in every iteration, which is not true for the Jacobi method.
The power flow converges in 20 iterations - roughly half of the iterations
required by the Jacobi method for this particular problem.
The computational properties of the YBUS Gauss-Seidel method are hard
to analyze. Most of the individual operation are scalar. All numerical
operations are oulined in table 4.2.

Table 4.2: Numerical routines and FLOP estimates for the YBUS Gauss-Seidel
method.

Line Operation Numerical
Interface Numerical Routine Total FLOPs Est.

3 S[i]/U[i] - - 11
3 (⋆)∗ - - 1
3 Y[i, :] · U[:] MKL VM vzMul() 6n

3 ⋆ − ⋆ - - 2
3 U[i] − ⋆ - - 2

Inner Loop (n times line 3): 6n2 + 16n

Although the theoretical number of FLOPs is lower, and the iteration
count is guaranteed to be equal or lower, the YBUS Gauss-Seidel method
is slower than the YBUS Jacobi method in practice (see section 4.5).
This shows the insignificance of FLOP counts on modern CPUs and the
importance of auxiliary CPU features like caching and intrinsic vector-
ization.
The YBUS Gauss-Seidel method can be refined by static acceleration (see
section 5.1), and multiple other enhancements have been proposed [87],
[110].

4.1.4 The YBUS Relaxation Method
The relaxation method was first described as a solution method for power
flow problems by R.H. Jordan in 1957 [57]. The exact name was probably
introduced by Stagg and El-Abiad [102].
In principle, the YBUS Relaxation Method represents an extension of the
YBUS Gauss-Seidel method. Instead of blindly updating line by line of

52

CHAPTER 4. POWER FLOW SOLUTION METHODS

the power flow equation, this method includes a step in which the node
with the biggest deviation from convergence is determined, and only
the corresponding line is updated. This yields a more directed iteration
approach, at the cost of an extra search for the biggest deviation.
Algorithm 3 shows the entire extent of the operations.

Algorithm 3 YBUS Relaxation method

Input: Y, S, U(0), ϵS

1: loop
2: IR = Y U − (S � U)∗

3: SR = U � IR

4: imax = argmax(|SR|)
5: if |SR [imax]| < ϵS then
6: break loop
7: U[imax] = U[imax] − IR[imax] / Y[imax, imax]

return U

Like the YBUS Jacobi algorithm, this algorithm also uses the current
residual IR precomputed in line 2 in multiple places. The function
argmax(|SR|) in line 4 yields the index of the largest entry in |SR| and
is directly available in Pythons Numpy and other numerical libraries.
The convergence criterion in lines 5 and 6 can directly use the computed
SR and imax. The voltage update step in line 7 then only targets the
line with the largest deviation from convergence.
It is noteworthy that one iteration of this method only changes one node
voltage, which makes it hard to compare the iteration counts to other
methods. If one voltage update at one node is counted as one iteration
(which would make one loop of the Jacobi and Gauss-Seidel methods
count as n iterations), then the YBUS relaxation method requires the
least number of iterations, but the computational runtime per iteration
is much higher.

53

CHAPTER 4. POWER FLOW SOLUTION METHODS

Figure 4.4: Voltage profiles of the first 4 iterations of a YBUS Relaxation
method for a single feeder grid, 4 nodes, 400 W of load applied to the node 3.
The final solution is shown as the dashed green line.

The progression of the voltage profile through the iteration looks roughly
like the one of the YBUS Jacobi method in Figure 4.2. However, only
one voltage is updated each iteration, first node 3, then node 2, then 3,
and then 2 again.

Table 4.3: Numerical routines and FLOP estimates for the YBUS Relaxation
method.

Line Operation Numerical
Interface Numerical Routine Total FLOPs Est.

2 Y U LAPACK zgemv() 12n2

2 S � U MKL VM vzDiv() 11n

2 (⋆)∗ LAPACK zlacgv() n

2 ⋆ − ⋆ MKL VM vzSub() 2n

3 U � IR MKL VM vzMul() 3n

4 |⋆| MKL VM vzAbs() 3n

4 argmax(⋆) MKL VM izamax() n

7 IR[imax]/Y[imax, imax] - - 11
7 U[i] − ⋆ - - 2

Inner Loop: 12n2 + 21n + 13

54

CHAPTER 4. POWER FLOW SOLUTION METHODS

Computationally, the YBUS Relaxation methods ends up as the least effi-
cient of the YBUS fixed-point methods. As seen in table 4.3, it can make
use of a decent number of vectorized methods, but it is not enough to
overcome the algorithmic deficiencies in most practical scenarios. The
usefulness of the YBUS Relaxation method is limited to special situ-
ations and conditions, like optimization problem on heavily memory-
constrained systems.

4.2 The YBUS Newton-Raphson Method

The Newton-Raphson method is a widely applied general solution
method for nonlinear equations. In its simplest form, the Newton-
Raphson method is an iterative solution method for root-finding problems
of the form

f(x) != 0, x ∈ R, f : R 7→ R (4.14)

with a known function f and an unknown scalar x. The method defines
the iteration scheme

x(m+1) = x(m) − f(x(m))
f ′(x(m))

, (4.15)

which, starting with a suitable initial guess x(0), iteratively approximates
the x that solves equation 4.14.
For multi-variate problems of the form

f(x) = 0, x ∈ Rn, f : Rn 7→ Rn, (4.16)

the derivative of f must be expressed as the Jacobi matrix J, which
contains all partial derivatives of f with respect to x, and the iteration
scheme therefore is

x(m+1) = x(m) − J(x(m))−1 f(x(m)). (4.17)

By introducing an update step ∆x(m) = x(m+1) − x(m), the iteration
scheme can be formulated as

∆x(m) = −J(x(m))−1 f(x(m)). (4.18)

55

CHAPTER 4. POWER FLOW SOLUTION METHODS

This equation can then be solved for ∆x(m) by solving the system of
linear equations

−J(x(m))∆x(m) = f(x(m)). (4.19)

The solution of linear equations of the form Ax = b is a highly optimized
function of many numerical libraries (most prominently LAPACK) and
therefore directly used in algorithm 4 as the operation x = solve(A, b).
In order to apply the Newton-Raphson method to the power flow prob-
lem, the problem has to be reformulated as a root-finding problem by
adapting equation 3.12 to

SR = S − U � Y∗U∗ != 0. (4.20)

The function SR(U) = 0 is now in the form of equation 4.16. The power
residual or power mismatch SR is a function of the state U and has to
approach 0 for a correct solution.
The complex function is separated into its real and imaginary parts:

SR
!= 0 ⇔

[
Re(S − U � Y∗ U∗)
Im(S − U � Y∗ U∗)

]
=

[
PR

QR

]
= f(x) != 0. (4.21)

The voltage U is also separated into its phase ϕ and absolute value |U|
to form the state vector

x =

[
ϕ

|U|

]
∈ R2n, ϕ, U ∈ Rn. (4.22)

With these definitions, the Newton-Raphson power flow algorithm can
be outlined as follows:

Algorithm 4 YBUS Newton-Raphson method

Input: Y, S, U(0), ϵS

1: loop
2: SR = U (Y U)∗ − S
3: if ‖[Re(SR), Im(SR)]‖max < ϵS then
4: break loop
5: J = calcJacobi (Y, U)
6: [∆ϕ, ∆|U|] = solve(− J, [Re(SR), Im(SR)])
7: U = (|U| + ∆|U|) ej(ϕ+∆ϕ)

return U

56

CHAPTER 4. POWER FLOW SOLUTION METHODS

The algorithm starts with the explicit computation of SR for the cur-
rently given U. After the convergence criterion in lines 3 and 4, the
Jacobi matrix is computed in line 5, the system of linear equation is
solved in line 6, and the complex voltage is updated in line 7.
The missing piece of the algorithm is the computation of the Jacobi ma-
trix J in calcJacobi(). From the standpoint of computational perfor-
mance, this is the step of the Newton-Raphson method with the greatest
optimization potential. For many physical problems, the Jacobi matrix
has to be computed or approximated using automatic or numerical dif-
ferentiation, but because the mathematical model of the power flow is
so well known and relatively simple, the Jacobi matrix can be explicitly
and analytically correctly computed at a given state x.
For the power flow problem, the Jacobi matrix J is the matrix that
satisfies

δf(x) = Jδx (4.23)[
δPR

δQR

]
= J

[
δϕ

δ|U|

]
(4.24)

J ∈ R2n×2n. (4.25)

In 1959, J. van Ness gave explicit formulas [115] for J in the form[
δPR

δQR

]
=

[
J11J12

J21J22

] [
δϕ

δ |U|
U

]
(4.26)

J11, J12, J21, J22, ∈ Rn×n. (4.27)

The punch-card computers of the time could not deal with complex
numbers directly, and so all expressions had to be completely decon-
structed into scalar values. The substitution δ|U |/U in the state vector
made the formulation of the submatrices easier. This method is still the
most popular in the literature and available implementations, although
a better way to compute the Jacobi matrix exists. Today, computations
with complex numbers are supported by low-level numerical libraries,
and thus the complex differentiation with subsequent separation into
real and complex parts is computationally more efficient. The result is

57

CHAPTER 4. POWER FLOW SOLUTION METHODS

a Jacobi matrix that is separated into two submatrices Jϕ and J|U|,

[
δSR

]
=

[
Jϕ J|U|

] [
δϕ

δ|U|

]
(4.28)

Jϕ, J|U| ∈ C2n×n, (4.29)

which can then be further separated into real and imaginary parts to be
identical to 4.26.
The analytical expressions for Jϕ and J|(U)| are given by Zimmerman
[125], but without a derivation or further context. The expressions
are used in his popular open-source packages MATPOWER and PY-
POWER, but most literature on the YBUS Newton-Raphson method
still uses the old expressions from van Ness.
The following analytical derivation of the Jacobi submatrices makes use
of the unity matrix E to bring the values of a vector onto the diagonal of
an appropriately sized square matrix, so that e.g. E U means ’the ma-
trix that has the elements of U on its diagonal and 0 everywhere else’.
This also allows for the elimination of the Hadamard product.
At every point during the iterations, the power mismatch SR is the dif-
ference between the power at the nodes computed with the voltage vector
x in that iteration and the power S given as an input value. That given
power is independent of changes in the voltage, and the differentiation
of the power mismatch with respect to the voltage can therefore ignore
it:

Jϕ = δSR
δϕ

= δ (S − U � Y∗U∗)
δϕ

= δ (U � Y∗U∗)
δϕ

(4.30)

J|U| = δSR
δ|U|

= δ (S − U � Y∗U∗)
δ|U|

= δ (U � Y∗U∗)
δ|U|

. (4.31)

For the symbolic derivation of equation 4.30, the product rule of differ-
entiation can be applied to the Hadamard product, yielding

Jϕ = δ (U � Y∗U∗)
δϕ

= E (Y U)∗ δU
δϕ

+ E Uδ (Y U)∗

δϕ
. (4.32)

58

CHAPTER 4. POWER FLOW SOLUTION METHODS

δU/δϕ is 0 everywhere except on the diagonal, where it is

δU i

δϕi
=

δ
(
|U i| · ejϕi

)
δϕi

= |U i| · j · ejϕi = jU i ∀ i = 1...n. (4.33)

The first partial derivation in equation 4.32 can therefore be expressed
as

δU
δϕ

= jE U. (4.34)

The partial derivative of the second part of equation 4.32 with respect
to the voltage angle is

δ(Y U)∗

δϕ
= Y∗ δU∗

δϕ
= (Y (jE U))∗ = −j (Y (E U))∗

. (4.35)

The extra parentheses here are necessary because matrix-vector multi-
plications are not commutative.
Equation 4.32 can now be written as

Jϕ = E (Y U)∗
jE U − E U j (Y (E U))∗ (4.36)

= jE U∗ (
E (Y U)∗ − (Y (E U))∗)

. (4.37)

The computation of J|U| works along the same way:

J|U| = δSR
δ|U|

=
δ
(
U � (Y U)∗)

δ|U|
(4.38)

= E (Y U)∗ δU
δ|U|

+ E Uδ (Y U)∗

δ|U|
(4.39)

= E (Y U)∗ E + E U Y∗ (4.40)
= E (Y U)∗ + E U Y∗. (4.41)

To summarize, the Jacobi matrix can be computed with

Jϕ = jE U∗ (
E (Y U)∗ − (Y (E U))∗)

(4.42)
J|U| = E (Y U)∗ + E U Y∗ (4.43)

J =

Re
(
Jϕ

)
Re

(
J|U|

)
Im

(
Jϕ

)
Im

(
J|U|

) (4.44)

59

CHAPTER 4. POWER FLOW SOLUTION METHODS

This series of algebraic matrix operations is computationally faster than
the explicit computation of the 4 submatrices proposed by van Ness.
The expressions E (Y U)∗ and E U can be precomputed and used in
multiple places in the computation.
The complete YBUS Newton-Raphson algorithm is outlined below:

Algorithm 5 YBUS Newton-Raphson method

Input: Y, S, U(0), ϵS

1: loop
2: I = (Y U)∗

▷ precomputation
3: SR = U � I − S
4: if ‖[Re(SR), Im(SR)]‖max < ϵS then
5: break loop
6: IM = E I ▷ precomputation
7: UM = E U ▷ precomputation
8: Jϕ = jU∗

M

(
IM − (Y UM)∗)

9: J|U| = IM + UM Y∗

10: J = [Re
(
Jϕ

)
, Re

(
J|U|

)
; Im

(
Jϕ

)
, Im

(
J|U|

)
]

11: [∆ϕ, ∆|U|] = solve(− J, [Re(SR), Im(SR)])
12: U = (|U| + ∆|U|) ej(ϕ+∆ϕ)

return U

Algorithmically, the Newton-Raphson method is locally quadratically
convergent and usually converges in much fewer steps than YBUS fixed-
point methods. Due to the dense Jacobi matrix, the YBUS Newton-
Raphson method is a method with ’global’ convergence properties. In
one iteration, the influence of all node loads on all voltages is considered
and all voltages are updated. For the simple example problem with 4
nodes, the YBUS Newton method converges in one step.

60

CHAPTER 4. POWER FLOW SOLUTION METHODS

Figure 4.5: Voltage profiles of the first iteration of a YBUS Newton method for
a single feeder grid, 4 nodes, 400 W of load applied to the node 3. The final
solution is shown as the dashed green line.

Computationally, the YBUS Newton-Raphson algorithm involves signif-
icantly more variables and memory in the inner loop than the other
methods outlined in this thesis. The detailed analysis of the numerical
routines in table 4.4 reveals many routines that have high complexities
and touch a lot of memory.
The convergence criterion in lines 4 and 5 can be ignored for complexity
considerations, as it will be mostly skipped by the branch prediction.
The copy operation in line 10 carries no algorithmic complexity and no
FLOPs, but has a significant impact on real-world performance.
The exponential function in line 12 that recreates the complex number
from its polar coordinates is a special case from a computational point
of view. Its algorithmic and computational properties depend entirely
on the exact parameters and are highly unpredictable [58].

61

CHAPTER 4. POWER FLOW SOLUTION METHODS

Table 4.4: Numerical routines and FLOP estimates for the YBUS Newton-
Raphson method.

Line Operation Numerical
Interface Numerical Routine Total FLOPs

2 Y U BLAS zgemv() 12n2

2 ()∗ LAPACK zlacgv() n

3 U � I MKL VM vzMul() 6n

3 Ucalc − S MKL VM vzSub() 2n

6 E I BLAS zgemv() 12n2

7 E U BLAS zgemv() 12n2

8 Y UM BLAS zgemm() 12n3

8 ()∗ LAPACK zlacgv() n2

8 IM − ⋆ MKL VM zomatadd() 2n2

8 UM ⋆ BLAS zgemm() 6n3

9 Y∗ LAPACK imatcopy() n2

9 UM Y BLAS zgemv() 6n3

9 IM + ⋆ MKL VM zomatadd() 2n2

11 solve(⋆) LAPACK dgesv() 8/3n3 + 7n2 + 7/3n

12 ⋆ exp(⋆) MKL VM vzExp() −

Inner Loop: 26 2
3 n3 + 49n2 + 11 1

3 n

When applied to transmission grids, the YBUS Newton-Raphson method
can be accelerated without a signifant loss of accuracy by neglecting the
influence of active power on the absolute voltage and the influence of
reactive power on the voltage angle difference. This simplification is
approximately valid in grids which very long line lengths roughly in the
range of more than 100 km. Looking at the formulation of the Jacobi
matrix in equation 4.26, this means that J12 and J21 are set to 0. The
original system of linear equation with 2n lines is thus split into two
linear system of size n, which is a significant advantage. The model
reduction and subsequent simplified solution is called decoupled power
flow.
This approach can be further optimized by applying the Jacobi matrix
computed in the first iteration for the subsequent iterations, thereby per-
forming the computationally expensive Jacobi computation only once
per load. This approach is called Fast Decoupled Load Flow [103].
There are also ’inexact’ Newton-Raphson methods [34], [67], which sub-

62

CHAPTER 4. POWER FLOW SOLUTION METHODS

stitute the exact computation of the Jacobi matrix for an iterative or
approximative approach.

4.3 The ZBUS Jacobi Method
The ZBUS formulation and associated solution methods arise from a sim-
ple modification to the basic YBUS-equations. The definition of the ad-
mittance matrix (equation 3.8) is

I = Y U. (4.45)

If the admittance matrix Y is invertible, the voltage on the right side
can be isolated by inverting it and multiplying it from the left:

Y−1I = Y−1Y U (4.46)
⇒ Y−1I = U, (4.47)

which would lead to the simple fixed point iteration scheme

U(m+1) = Y−1
(

S � U(m)
)∗

. (4.48)

This scheme looks very promising - the inverted admittance matrix needs
to be computed only once for a grid, and all subsequent iterations can be
carried out using only simple vector-matrix multiplications and vector
operations.
However, the admittance matrix as shown in equation 4.45 is not gen-
erally invertible, as the relationship between U and I is not generally
injective. The physical system that the equation describes is only well
and unambiguously defined after a slack node has been included, which
defines the voltage level that the grid is on. Both options for slack
handling outlined in section 3.3 lead to an invertible matrix and to a
correctly working ZBUS Jacobi method in different ways. Option 1 in-
volved a changed line and entry in S for every slack node as shown again
in equation 4.49 for a 3-node, single feeder grid:(U∗

0U0)/U∗
0

S∗
1/U∗

1

S∗
2/U∗

2

 =

 1 0 0
Y 01 − (Y 01 + Y 12) Y 12

0 Y 12 −Y 12

U0

U1

U2

 . (4.49)

63

CHAPTER 4. POWER FLOW SOLUTION METHODS

An admittance matrix Ymod modified in this fashion is invertible, and
equation 4.47 then leads to a simple fixed point iteration scheme:

U(m+1) = Y−1
mod

(
S � U(m)

)∗
. (4.50)

Using this method, additional complexities can be incorporated into the
admittance matrix as normal.
The other option for slack handling outlined in section 3.3 requires the
deletion of the line corresponding to one slack node:

[
S∗

1/U1
∗

S∗
2/U2

∗

]
=

[
Y 01 − (Y 01 + Y 12) Y 12

0 Y 12 −Y 12

] U0

U1

U2

 . (4.51)

The resulting admittance matrix in this case is not square and therefore
not conventionally invertible by definition. However, the matrix can
be squared using a simple transformation: If there are no shunt admit-
tances in the grid, the power flows computed during an iteration are not
dependent on the absolute voltage level, only on the voltage differences
between the nodes. The voltage vector used for the computation of 4.45
can be shifted up or down by any value, and the equation stays correct.
So, by subtracting U0 from U, equation can be formulated as

[
S∗

1/U1
∗

S∗
2/U2

∗

]
=

[
Y 01 − (Y 01 + Y 12) Y 12

0 Y 12 −Y 12

] U0 − U0

U1 − U0

U2 − U0

 . (4.52)

The first column of Y in equation 4.52 is now always multiplied by 0 and
can therefore be deleted without losing any information, which leads to[

S∗
1/U1

∗

S∗
2/U2

∗

]
=

[
− (Y 01 + Y 12) Y 12

Y 12 −Y 12

] [
U1 − U0

U2 − U0

]
. (4.53)

The resulting square admittance matrix Yred is conventionally invertible
again. Equation 4.47 is now

Y−1
red I = U − U0, (4.54)

where U0 is a vector with U0 as every entry and the size of every vector is
reduced by one. In practice, the slack voltage can be added or subtracted

64

CHAPTER 4. POWER FLOW SOLUTION METHODS

to or from the vector U as a scalar value via the BLAS Level 1 routine
zaxpy(). This leads to the fixed point iteration scheme

U(m+1) = Y−1
red I(m) + U0 (4.55)

⇒ U(m+1) = Y−1
red

(
S � U(m)

)∗
+ U0, (4.56)

In the following, U0 is more generally denoted as Uslack.
If there are shunt impedances in the grid, they can not be incorporated
into the admittance matrix as outlined in section 4.6.4, as the admittance
matrix is multiplied with the shifted voltage vector and not the real
voltages occurring at the nodes. Instead, their effect must be integrated
using current compensation by computing the current flowing through
the shunt and adding it to the computed node current I(m) as in

U(m+1) = Y−1
red

(
S � U(m) + Yshunts � U(m)

)∗
+ Uslack. (4.57)

Both variants of the ZBUS Jacobi method lead to mathematically equiv-
alent iterations. In the remainder of the thesis, the second option is
used, as it is more prevalent in the existing literature.

For the Jacobi method, analogous to the YBUS Jacobi method, the re-
sulting algorithm 6 for the second option is very concise and contains
only simple matrix and vector operations apart from the inversion of
Y at the very start. The given admittance matrix is in this case the
reduced matrix Yred.

Algorithm 6 ZBUS Jacobi Method

Input: Y, S, U(0), U slack, ϵS

1: Z = Y−1 ▷ precomputation
2: loop
3: I = (S � U)∗

4: if ‖U � I∗ − S‖∞ < ϵS then
5: break loop
6: U = Z I + Uslack

return U

The explicit matrix inversion in line 1 has to be carried out only once for
every grid. The current is explicitly computed as an intermediate result

65

CHAPTER 4. POWER FLOW SOLUTION METHODS

in line 3 because it is required for the convergence criterion in line 4 as
well as the actual voltage update step that happens in line 6.
Like the YBUS Newton method, the ZBUS Jacobi method algorithmically
has ’global’ iteration properties and solves the simple example problem
in one step.

Figure 4.6: Voltage profiles of the first iteration of a ZBUS Jacobi method for
a single feeder grid, 4 nodes, 400 W of load applied to the node 3. The final
solution is shown as the dashed green line.

Table 4.5: Numerical Routines and complexities for the ZBUS Jacobi method.
The number of FLOPs is given in a mathematical sense only.

Line Operation Numerical
Interface Numerical Routine Total FLOPs Est.

1 Y−1 LAPACK zgetrf(); zgetri() 6 2
3 n3 − 5n2 + 8 1

3 n

3 S � U MKL VM vzDiv() 11n

3 ()∗ LAPACK zlacgv() n

6 Z I LAPACK zgemv() 12n2

6 ∆U + U slack MKL VM zaxpy() n

Inner Loop: 12n2 + 13n

Computationally, this method plays very well to the strengths of mod-
ern CPUs and its runtime is often very competitive. The numerical
routines used and their complexities are outlined in table 4.5. The
costly computation of the matrix inverse Z = Y−1 occurs only once
for every unique grid. The memory footprint of the entire inner loop
is 16Bytes · (n2 + 3n + 1.5). The inherent density of Z renders sparse
matrix techniques inefficient except for very large, radial grids. In the
60s and 70s, when most of the groundwork for power flow computations
was laid, the storage demands for the full matrix Z were a deal breaker,
and the method was dismissed (e.g., [104]). With today’s computers,

66

CHAPTER 4. POWER FLOW SOLUTION METHODS

the storage demand is no longer a problem for all but massive grids, but
the method still seems to be largely unused.
As the ZBUS approach also leads to a fixed-point formulation, the Gauss-
Seidel and Relaxation methods could also be applied here. However,
due to the dense matrix Z and the therefore inherently global iterations
(all nodes are corrected in every iteration step), the main disadvantage
of the YBUS Jacobi method does not apply here, and the ZBUS Jacobi
method is sufficient.

4.4 Backward/Forward Sweep Method

In very simple electrical grids with only one straight path (sometimes
called feeders, although this term is sometimes used for all low-voltage
grids, regardless of grid topology, in the following called single feeders),
the application of Kirchhoffs Voltage Law (KVL) and Kirchhoffs Current
Law (KCL) leads to an algorithm that uses only vector arithmetic and
no matrix multiplication.
Figure 4.7 shows the equivalent electrical circuit of a single feeder grid
with three nodes, with three closed loops in which, according to KVL,
the voltages must add up to zero.
These loops give rise to the following equations:

Loop 1: U0 = U01 + U1

Loop 2: U0 = U01 + U12 + U2

Loop 3: U0 = U01 + U12 + U23 + U3.

(4.58)

They can be reordered to explicitly describe the node voltages U1, U2,
and U3 :

U1 = U0 − U01

U2 = U0 − U01 − U12

U3 = U0 − U01 − U12 − U23.

(4.59)

These equations can be expressed in a vectorized form by introducing
the vector of line voltages

UL =
[
U01 U12 U23

]T

, (4.60)

67

CHAPTER 4. POWER FLOW SOLUTION METHODS

Figure 4.7: Feeder Grid with three consumer nodes. The dashed lines show
three closed loops for Kirchhoffs Voltage Law, the red dots mark three nodes
for the application of Kirchhoffs Current Law

another vector of the same dimension, which contains the transformer
or slack voltage

U0 =
[
U0 U0 U0

]T

, (4.61)

and the operation

cumsum(X) =
[
x1 x1 + x2 x1 + x2 + x3 . . .

]
,

where X =
[
x1 x2 x3 . . .

]
.

(4.62)

The vectorized form of equations 4.59 is then

U = U0 − cumsum(UL). (4.63)

The line voltage vector UL, in this case the voltage drops U01, U12
and U23, can be expressed in terms of the line impedances and the line

68

CHAPTER 4. POWER FLOW SOLUTION METHODS

currents by applying Ohm’s Law:

U01 = Z01 I01 (4.64)
U12 = Z12 I12 (4.65)
U23 = Z23 I23, (4.66)

or, in a vectorized form,

UL = ZL � IL. (4.67)

The line impedance vector ZL contains all the complex impedances in
one vector:

ZL =
[
Z01 Z12 Z23

]T

, (4.68)

The line currents IL can, in the special case of a single feeder grid, easily
be expressed in terms of the node currents I0, I1 and I2 by applying
KCL:

Node 3: I23 = I3 (4.69)
Node 2: I12 = I2 + I23 = I2 + I3 (4.70)
Node 1: I01 = I1 + I12 = I1 + I2 + I3 (4.71)

The line current vector

IL =
[
I01 I12 I23

]T

(4.72)

can therefore be expressed in terms of the node currents as

IL = reversed(cumsum(reversed(I))), (4.73)

where the operation reverse() results in a new vector with inverted
order.
Lastly, the node currents I can be calculated using the complex power

69

CHAPTER 4. POWER FLOW SOLUTION METHODS

given at every node:

I1 = S
∗
1/U

∗
1 (4.74)

I2 = S
∗
2/U

∗
2 (4.75)

I3 = S
∗
3/U

∗
3, (4.76)

or, in a vectorized form, using the Hadamard division analogous to sec-
tion 3.2:

I = S∗ � U∗ (4.77)

With this, the initial KVL equations in 4.58 have been transformed to
express the node voltages U in terms of known quantities: the trans-
former voltage U0, the impedances ZL, the consumed powers S, and an
initial guess for the voltages U(0). The full implicit formulation is

U(m+1) = U0 − cumsum(ZL � reversed(cumsum(reversed(S∗ � U(m)∗))))
(4.78)

The algorithm for the backwards/forwards sweep power flow (BFS) is
outlined in algorithm 7.

Algorithm 7 Backward/Forward Sweep Power Flow for Feeders

Input: ZL, S, U(0), U0, ϵS

1: loop
2: I = (S � U)∗

3: if ‖U � I∗ − S‖∞ > ϵS then
4: break loop
5: U = U0 − cumsum(ZL � reversed(cumsum(reversed(I))))

return U

With the exception of the input variables, the algorithm looks similar
to the other fixed point methods, especially the ZBUS Jacobi method.
In fact, the BFS algorithm can be seen as a special case of the ZBUS
Jacobi method. The only difference is the computation of the ’correc-
tion voltage’ U − U0, which involves a matrix-vector multiplication for
the ZBUS Jacobi method, and vector operation for BFS. The cumsum()
and reversed() methods are available in most higher-level numeric li-

70

CHAPTER 4. POWER FLOW SOLUTION METHODS

braries.
Notably, the BFS algorithm contains only vector operations and does
not require any matrix-vector multiplications. It is supremely fast, but
only applicable to single feeder grids with one straight line of lines and
nodes.
Just like the YBUS Newton-Raphson and ZBUS Jacobi methods, the
Backward-Forward-Sweep method solves the simple example problem
in Figure 4.1 in one step:

Figure 4.8: Voltage profiles of the first iteration of a Backward-Forward-Sweep
method for a single feeder grid, 4 nodes, 400 W of load applied to the node 3.
The final solution is shown as the dashed green line.

The memory requirements for this method are also very low, which could
be an advantage on lower end or microprocessor-based hardware.
There have been attempts (e.g., [42][37][69][90][98]) to apply the Back-
ward / Forward - Sweep method to other grid topologies by describing
the current-to-voltage-relationship in a matrix with graph-theory tools,
but these approaches necessarily lead to methods that are mathemati-
cally equivalent to the ZBUS method.

4.5 Performance Characteristics
In order to get a general impression of the performance characteristics,
this section features a detailed performance breakdown of one specific
power flow problem solved by each presented method. The chosen prob-
lem consists of 10, 000 power flows with different, randomly chosen loads
S in a low-voltage, single feeder (non-meshed) grid with 20 nodes. This
grid topology represents a worst-case scenario for the performance of
power flow solution methods. The convergence criterion is the power
residual with ϵS = 1 VA for each method.
The metrics shown here are specifically chosen to demonstrate the

71

CHAPTER 4. POWER FLOW SOLUTION METHODS

difference between the algorithmic efficiency and the computational
performance of the methods, as introduced in section 2.2.

Iterations and Runtime

First, the average number of iterations per load for every method is
plotted in Figure 4.9.

YBus

Jacobi

YBus

Gauss-

Seidel

YBus

Relaxation

YBus

Newton

ZBus

Jacobi

BFS

101

102

103

104

It
er
a
ti
o
n
s
p
er

L
o
a
d
/
-

1.7k
753

12k

1.7 1.6 1.6

Figure 4.9: Average number of iterations per load for each method - lower is
better

The number of iterations is purely a measure of the quality of the algo-
rithmic efficiency, not of the computational performance.
In the case of the YBUS Relaxation method, the number is however
slightly misleading, as only the voltage at one node is updated per iter-
ation as opposed to all other methods, which can theoretically update
all node voltages in every step. The differences are enormous, with
the three YBUS fixed point methods requiring considerably more iter-
ations to converge. Between the YBUS Jacobi method and the YBUS
Gauss-Seidel method, the latter is more algorithmically effective and
convergences in much fewer iterations.
The three other methods with their more global adjustments convergence
in one or two iterations, which shows their algorithmic superiority.
Figure 4.10 shows the average time per iteration for each of the six
methods. This is not the CPU time, but the ’wall time’, the actual time
elapsed.

72

CHAPTER 4. POWER FLOW SOLUTION METHODS

YBus

Jacobi

YBus

Gauss-

Seidel

YBus

Relaxation

YBus

Newton

ZBus

Jacobi

BFS

10−6

10−5

10−4

T
im

e
p
er

It
er
a
ti
o
n
/
s

1.1 µs

5.9 µs

1.4 µs

83 µs

4.0 µs
3.0 µs

Figure 4.10: Average times for a single iteration for each method - lower is
better

The YBUS Jacobi method is more than 5 times faster per iteration com-
pared to the YBUS Gauss-Seidel method. This makes the YBUS Jacobi
method faster overall.
The YBUS Relaxation method has a higher time per iteration than the
YBUS Jacobi method and, as shown above, a higher iteration count. This
makes the it uncompetetive in almost all situations, the only potential
exception being optimization problems with tiny, localized changes in
power between runs.
The YBUS Newton method has the highest runtime per iteration, due to
the required construction of J and the solution of the system of a linear
equation in every iteration.
For both the ZBUS Jacobi and YBUS Jacobi methods, the dominating
operation is a matrix-vector multiplication, the only difference being
the sparsity of Y compared to Z, which still yields a considerable ad-
vantage. Surprisingly, the advantage of the Backward-Forward-Sweep
(BFS) method is only 25%, despite it featuring only vector-vector mul-
tiplications.
For the ZBUS Jacobi method, the time shown includes the one-time
matrix inversion of the admittance matrix, distributed onto the roughly
16, 000 individual iterations. The inversion of the admittance matrix in
this grid with 20 nodes takes around 17 µs on its own.
Figure 4.11 shows all total time durations for the solution of the 10,000
power flows. This time is the number of iteration in Figure 4.9, multi-
plied with the time per iteration in Figure 4.10 and 10,000, the number
of loads.

73

CHAPTER 4. POWER FLOW SOLUTION METHODS

YBus

Jacobi

YBus

Gauss-

Seidel

YBus

Relaxation

YBus

Newton

ZBus

Jacobi

BFS

10−1

100

101

102
W
a
ll
T
im

e
/
s

19 s

44 s

162 s

1.4 s

63 ms 48 ms

Figure 4.11: ’Wall Time’ - real time the computer needed for the solution -
lower is better

The total runtime clearly shows that the YBUS fixed point methods can
not compete with the other methods. The YBUS Newton method is
more than 10 times faster than the YBUS Jacobi method, and the two
impedance-based methods are faster still by a factor of more than 20.
These huge performance differences diverge from the information in
many publications, which often cite the Newton-Raphson as the fastest
and most efficient method. [79], [20]. This at last shows where the find-
ings about the computational performance of power flow computations
from the 60s and 70s are severely outdated. The ZBUS Jacobi method
is not held back by its memory demands anymore and is - by these
numbers - by far the most performant generally applicable power flow
method.
The other metrics discussed in section 2.2 offer a more detailed view
into the computational performance of the implementations.

L1 Cache Loads and Misses

Figure 4.12 shows the number of data loads from the L1 cache. This
number is a measure of the memory accesses of the program.
The number of L1 cache loads is unsurprisingly roughly proportional
to the runtime in Figure 4.11, no method shows a particular advantage
here. Of these cache load requests, a certain percentage fail and are
delegated to the other, slower caches and finally to memory. Figure 4.13
shows the percentage of L1 cache misses.
This percentage is a measure of the computational performance inde-
pendent of the algorithmic complexity.

74

CHAPTER 4. POWER FLOW SOLUTION METHODS

YBus

Jacobi

YBus

Gauss-

Seidel

YBus

Relaxation

YBus

Newton

ZBus

Jacobi

BFS

108

109

1010

1011

L
1
C
a
ch

e
L
o
a
d
s
/
-

33B
68B

316B

3.2B

230M

69M

Figure 4.12: Number of L1 cache loads - lower is better

YBus

Jacobi

YBus

Gauss-

Seidel

YBus

Relaxation

YBus

Newton

ZBus

Jacobi

BFS

0

1

2

3

L
1
C
a
ch

e
M
is
se
s
/
%

0.070 0.165
0.293

2.9

1.7

1.4

Figure 4.13: Percentage of L1 cache load misses - lower is better

The percentage of cache misses of the YBUS fixed-oint methods is a
magnitude lower than of the other three methods. Part of the reason
is that the YBUS fixed-point methods take much longer in total, which
gives the prefetching algorithms inside the CPU more time and data
to adapt to the memory access patterns. Another reason is the algo-
rithmic simplicity, especially of the YBUS Jacobi method. On the other
hand, the YBUS Newton-Raphson method features many variables and
complex memory access patterns, and the result is a comparably high
number of cache misses.
Although a high number of cache misses is detrimental for the compu-
tational performance, it also means that there is optimization potential
in the implementation and the CPU itself. For example, the YBUS
Newton-Raphson method can probably perform better on a CPU with
more or faster cache. The low numbers of the YBUS fixed-point methods

75

CHAPTER 4. POWER FLOW SOLUTION METHODS

show that this potential is largely already exploited.

Branch Misses

Another important metric for efficient programs is the number of branch
misses, as introduced in section 2.2, shown in Figure 4.14. A branch
miss can interrupt the instruction pipeline and stall the CPU. Again,
the YBUS fixed point methods are very well suited for the branch predic-
tion. The other three methods produce significantly more branch misses,
which on the one hand is explained by the low number of iterations, but
on the other hand promises some optimization potential.

YBus

Jacobi

YBus

Gauss-

Seidel

YBus

Relaxation

YBus

Newton

ZBus

Jacobi

BFS

0.0

0.5

1.0

1.5

2.0

B
ra
n
ch

M
is
se
s
/
%

0.433

0.069

0.325

1.6
1.8

2.1

Figure 4.14: Percentage of branch misses for each power flow method - lower
is better

Instructions per Cycle

Lastly, Figure 4.15 shows the number of executed instructions per CPU
cycle, which shows the effects of µops-fusing on the one hand - allowing
a combination of multiple instruction into one and therefore a number
higher than one even without explicit parallelization - and CPU stalling
on the other hand - leading to a underutilization of CPU resources. The
YBUS Newton-Raphson method with its low computational performance
stands out with a particularly low value, which is directly caused by the
high number of cache misses as shown in Figure 4.13.

These more detailed measurement results allow for a deeper understand-
ing of the wall time results in Figure 4.11. The YBUS fixed point methods
are very well suited for modern CPU architectures, but their algorithms

76

CHAPTER 4. POWER FLOW SOLUTION METHODS

YBus

Jacobi

YBus

Gauss-

Seidel

YBus

Relaxation

YBus

Newton

ZBus

Jacobi

BFS

0

1

2
In
st
ru
ct
io
n
s
p
er

C
y
cl
e
/
-

2.2

1.8

2.4

0.544

1.9
1.8

Figure 4.15: Average number of instructions executed per CPU cycle - higher
is better

are too inefficient and require too many iterations to converge - this has
not changed since the inception of the methods in the 60s.
The ZBUS Jacobi method causes slightly more cache and branch misses,
but the algorithm itself is so good in terms of number iterations required
that it beats all other methods except for the highly specialized and lim-
ited BFS method. The memory requirements that led to unacceptable
runtimes per iteration in the 60s and 70s are no problem for modern
systems, and the memory access patterns are even more uniform than
of the YBUS Newton-Raphson method, which makes the ZBUS Jacobi
method much faster.
The YBUS Newton-Raphson method has been the most popular power
flow method since the 70s because of its efficient algorithm, not because
it particularly well suited to modern CPUs. The solution of a system of
linear equations in every iteration does not allow the CPU to perform
to its maximum potential and frequently stalls it to load from cache or
memory or revert to a branch after a misprediction.
The results also show the performance ceilings - what limits the perfor-
mance - of every method. The YBUS fixed point methods are clearly
CPU-bound and would only profit from a faster CPU clock. The YBUS
Newton-Raphson method on the other hand would mainly profit from a
bigger cache.
These performance measurements were conducted for a single scenario
with a simple grid. Other grid sizes and topologies may lead to slightly
different results, but the overall assessment is largely independent of
grid shape except for extreme or very specific scenarios, e.g. 10,000s of
nodes or close-to-blackout conditions. Chapter 6 contains three more

77

CHAPTER 4. POWER FLOW SOLUTION METHODS

specific examples of more practical applications of these power flow so-
lution methods.

4.6 Power Flow Complications

The definition of the YBUS formulation in section 3.1 and the explana-
tions of the power flow solution methods in this chapter all assumed a
fairly simplified electrical grid model: The loads were all elements with
constant power, the grid was limited to one voltage level, was single-
phase (symmetric), contained no shunts or transformer impedances, and
there was only one slack node. In this section, the consequences of
removing these model simplifications is discussed in terms of impact
on the mathematical model, the implementation and the computational
runtime.

4.6.1 Load Characteristics

The notion of a load in a power system is an abstraction. A load always
represents an electrical network which consists of many electrical ele-
ments [51], which, until now, has been modeled as one electrical element
that draws constant power S in this thesis. Specifically, the load has been
assumed to be independent of voltage deviations or other environmen-
tal changes. Real electrical devices usually have different characteristics
regarding their behavior under voltage changes. For example, a conven-
tional heating element is better represented by a constant impedance,
so the power drawn by the device is not constant with respect to the
voltage, but is described by

S = U I∗ = U
U∗

Z∗ = |U |2

Z∗ . (4.79)

In this case, the load is quadratically dependent on the absolute voltage.
Load can also resemble a constant current sink, in which case the power
is linearly dependent on the voltage. Figure 4.16 shows how the resulting
power of each of the three load models changes with the voltage.

78

CHAPTER 4. POWER FLOW SOLUTION METHODS

190 200 210 220 230 240 250 260 270

Voltage Magnitude / V

600

800

1000

1200

1400

A
ct
iv
e
P
ow

er
/
W

Iconst
Zco

ns
t

Sconst

Figure 4.16: Resulting equivalent power for different load models under varying
voltage in a purely active-power-case

Real household loads are usually composed of multiple devices that all
represent one of the three load characteristics or a mixture between them.
In medium or high voltage grids, a load consists of one or more entire
grids and the households connected to them, including transformers.
For most practical problems, the exact load characteristics are nearly
impossible to determine, as only power measurements, and not volt-
age or current, let alone impedance measurements are readily available.
Luckily, their influence on the result is often negligible in steady-state
simulations. CIGRE Working Group C4.605 performed a large-scale
survey on the usage of load models by utilities all around the world and
found that 84% of the participants use a constant power S as load model
[18],[72] for static, steady-state simulations.
If the need arises, using another load model is straightforward in all
power flow methods. In fact, using a pure constant current model
severely simplifies and reduces them to direct, non-iterative equations.
A pure constant impedance model requires the substitution of I = (S/U)∗

with I = U/Z.
When mixed load models are used, they are usually expressed in the
polynomial form

S = P0

[
a1

(
|U |
U0

)2

+ a2

(
|U |
U0

)
+ a3

]
+ jQ0

[
a4

(
|U |
U0

)2

+ a5

(
|U |
U0

)
+ a6

]
,

(4.80)

79

CHAPTER 4. POWER FLOW SOLUTION METHODS

also called the ZIP model, or the exponential form

P = P0

(
|U |
U0

)nP

(4.81)

Q = Q0

(
|U |
U0

)nQ

. (4.82)

U0 in this case signifies the voltage at which the nominal values P0 and
Q0 are given. The coefficients a1 - a6 or nP and nQ need be measured
in a laboratory environment, deduced by evaluating long-term measure-
ments, or assumed.
Computationally, the integration of a mixed load model requires the
computation of the load function in every iteration step.
The technique of adjusting the current in every iteration step to replicate
the behavior of a component model can also be applied to slack nodes
(see section 4.6.2), synchronous generators (see section 4.6.3), and more
[12], [13].
If appropriate data is available, load models can be even more complex
and take into account frequency dependencies or active control models.
However, none of these modifications should influence the computational
efficiency of the power flow methods beyond a constant overhead per it-
eration.

4.6.2 Multiple Slack Nodes
European low voltage grids usually have only one supplying transformer.
Medium and high voltage grids as well as low voltage grids in other re-
gions, however, can have multiple transformers connecting them to the
overlaying grid or even different grids, and so the corresponding power
flow model needs to accommodate multiple slack nodes. For transmis-
sion grids, this feature is unnecessary (see section 3.3). Therefore, it was
not an issue in the early development of power flow algorithms and is
not mentioned by many existing papers, books, or libraries.

Multiple Slack Nodes with Identical Voltage

If there are multiple slack nodes in the grid which all share the same
voltage magnitude and angle, the equations can be trivially reduced
to the one-slack-formulation by deleting all slack nodes except one and

80

CHAPTER 4. POWER FLOW SOLUTION METHODS

connecting the now loose connections to that single slack. The remain-
ing slack node can now be treated as a single slack node as explained in
section 3.3.

Figure 4.17: Reduction of multiple slack nodes with identical voltages

Multiple Slack Nodes with Different Voltage

If the slack nodes have different voltage magnitudes or angles, which
is common when the supplying transformers have a means of voltage
control like tap changers, the nodes and their corresponding lines in the
equation have to be kept in place, while ensuring that the voltage never
changes.
For the YBUS methods, the additional slack nodes can be integrated
into the equations similarly to a single slack node if the first option
for integrating the slack as explained in section 3.3 is chosen. Then,
just like the first slack node, the lines corresponding to the other slack
nodes in the admittance matrix have to be changed to ’unity’ and the
corresponding power Si, which is not given in advance for a slack bus, to
UiU

∗
i , which is. This modification ensures a constant voltage regardless

of any load changes and thusly ensures the correct solution with any

81

CHAPTER 4. POWER FLOW SOLUTION METHODS

YBUS method. For the simple grid in Figure 4.17, a simple feeder grid
with 4 nodes and 3 lines, the power flow equation looks as follows:

U0U∗
0

S1

S2

U3U∗
3

 =

U0

U1

U2

U3

 �

1 0 0 0

Y 01 −Y 01−Y 12 Y 12 0
0 Y 12 −Y 12−Y 23 Y 23

0 0 0 1

∗

U0

U1

U2

U3

∗

.

(4.83)

The same does not work for the ZBUS Jacobi method. The slack voltage
is an inherent part of the algorithm, and all node voltages are computed
relative to the single slack voltage. A direct integration of multiple slack
nodes is therefore impossible. However, the method can be augmented
to model the slack nodes as normal load nodes, and update the load at
those nodes in every iteration to mimic the behavior of slack nodes. This
general compensation approach can also be used to replicate other node
behaviors (see section 4.6.3).
If there are two slack nodes, this involves a few more arithmetic opera-
tions before the voltage update step:
Let islack2 ∈ N be the index of the additional slack node and Uslack2 ∈ C
the desired, second slack voltage. Then U[islack2] should converge to-
wards Uslack2, and the iterations should not conclude before this require-
ment is not fulfilled to at least some degree. This requires the definition
of a secondary convergence criterion ϵU,slack2 = U[islack2] − Uslack2. Be-
fore every voltage update step, the corresponding entry in the current
vector I[islack2] should then be modified so that the voltage update steps
yields a voltage equal or at least as close as possible to Uslack2 at position
islack2. This is ensured by changing I[islack2] so that

Uslack2 − Uslack
!= Z[islack2, :] · I. (4.84)

Mathematically, this is solved by

I[islack2] =
Uslack2 − Uslack −

∑
i 6=islack2

Z[islack2, i] I[i]
Z[islack2, islack2]

(4.85)

After that, the power vector S should also be updated to ensure that
the changes are carried over to the next iteration by setting

S[islack2] = U[islack2] · I[islack2]∗. (4.86)

82

CHAPTER 4. POWER FLOW SOLUTION METHODS

Numerically, equation 4.85 is inelegant and requires a loop implementa-
tion because of the exception for i 6= islack2. If, however, I[islack2] is set
to 0 before this operation, the sum can be eliminated without changing
the result of the expression:

I[islack2] = Uslack2 − Uslack − Z[islack2, :] · I
Z[islack2, islack2]

. (4.87)

This does no harm, because I[islack2] is reassigned immediately anyway.
Z[islack2, :] could be assigned to its own variable, but this did not improve
the runtime with the programming toolchain used in this thesis.
Algorithm 8 summarizes the steps for the ZBUS Jacobi method with 2
slack nodes.

Algorithm 8 ZBUS Jacobi Method with 2 slack nodes

Input: Y, S, U(0), Uslack, islack2, Uslack2, ϵS , ϵU,slack2
1: Z = Y−1

2: Uslack = Uslack[0]
3: loop
4: I = (S � U)∗

5: I[islack2] = 0
6: I[islack2] = (Uslack2 − Uslack − Z[islack2, :] · I[:]) /Z[islack2, islack2]
7: S[islack2] = U[islack2] I[islack2]∗
8: if ‖U� I∗ −S‖∞ < ϵS and U[islack2]−Uslack2 < ϵU,slack2 then
9: break loop

10: U = Z I + Uslack

return U

The operations in algorithm 8 are all vectorized and do not introduce
many additional variables, so the runtime is not heavily impacted.
If the grid model has three or more slack nodes, the same solution prin-
ciple applies. In this case, let m be the number of additional slack nodes,
islacks ∈ Nm a vector with the indices of the additional slack nodes, and
Uslacks ∈ Cm a vector of the corresponding slack voltages. The compu-
tation of the current I that yields the correct voltages at the slack nodes
now requires the solution of a system of m linear equations. Specifically,
equation 4.84 now involves m lines of Z.
The required operations could be expressed using an extended index no-
tation, where Z[islacks, :] denotes a new matrix which contains only those
lines of Z of which the index is in islacks. In numerical libraries, this is

83

CHAPTER 4. POWER FLOW SOLUTION METHODS

called fancy indexing and is supported by Pythons Numpy and others.
With this, the operation to find I[islacks] is

I[islacks] = solve(Z[islacks, islacks], Uslacks − Uslack[islacks]) (4.88)

In practice, it is more efficient to reorder the nodes and put all slack
nodes at the top than to use fancy indexing. Then, using the number of
additional slack nodes m, equation 4.88 can be expressed as

I[:m] = solve(Z[:m, :m], Uslacks − Uslack[:m]), (4.89)

where the notation I[: m] denotes ’the first m elements of I’.
The complete algorithm for the ZBUS Jacobi method with three or more
slack nodes is outlined in 9. Y and S are assumed to be ordered in a
way that all m slack nodes are at the top.

Algorithm 9 ZBUS Jacobi Method with 3 or more slack nodes

Input: Y, S, U(0), Uslack, m, Uslacks, ϵS , ϵU,slacks

1: Z = Y−1

2: loop
3: I = (S � U)∗

4: I[:m] = solve(Z[:m, :m], Uslacks − Uslack[:m])
5: S[:m] = U[:m] � I[:m]∗
6: if ‖U � I∗ − S‖∞ < ϵS and ‖U[:m] − Uslacks[:m]‖max < ϵU,slack

then
7: break loop
8: U = Z I + Uslack

return U

The Backward-Forward-Sweep method could, in principle, be augmented
the same way, but possible applications are probably very rare.

4.6.3 PV Nodes
If a node in a grid is a synchronous generator, as most power stations
effectively are from a grid standpoint, the representation as a node with
fixed active and reactive power is not suitable and does not do the actual
behavior justice. A real power station generator is controlled by a multi-
tude of control loops and additional overlaid control by transmission grid

84

CHAPTER 4. POWER FLOW SOLUTION METHODS

operators. A first-order approximation to this behavior is a node with
a fixed active power and a fixed voltage magnitude, where the reactive
power and the voltage angle are variables instead of the two components
of the complex voltage. These nodes are commonly called PV Nodes,
generator nodes, or voltage-controlled nodes. In the iterative procedure,
this means that the magnitude of the voltage must be kept constant,
while the reactive power can be varied to bring the equations into har-
mony. Like with slack nodes, this could be achieved by deleting the
corresponding lines in the admittance matrix. This procedure is favor-
able for YBUS methods, well described in the papers that introduced the
methods [115] [102] and particularly simple for YBUS Newton-Raphson
method, because the complex power is being split up into real and imagi-
nary parts already. However, for the ZBUS Jacobi method this procedure
is detrimental to performance, as it necessarily interrupts the main com-
plex matrix multiplication. There is a better method, whose principle
was already described in 1963 [12].
The basic idea is again to treat the node as a PQ node with constant
power and variable voltage and compensate appropriately in a separate
step. Algorithm 10 shows the complete steps to compensate for PV
nodes in the ZBUS Jacobi method.

Algorithm 10 ZBUS Jacobi Method with PV nodes

Input: Y, S, U(0), Upv, npv, ϵS , ϵU,pv

1: Z = Y−1

2: Zpv,diag,inv = 1 � diag(Z)[: npv]
3: loop
4: I = (S � U)∗

5: I[: npv] = I[: npv]+Zpv,diag,inv � (Upv +exp(j ·arg(U[: npv]))−
U[: npv])

6: Im(S[:npv]) = Im(S[:npv] − U[:npv] � I[:npv]∗)
7: if ‖U � I∗ − S‖∞ < ϵS and ‖U[:npv] − Upv‖max < ϵU,pv then
8: break loop
9: U = Z I + Uslack

return U, S

This algorithm is modified compared to algorithm 6 in lines 2, 5, and 6.
Line 2 just precomputes a section of Z for later use in every iteration.
In line 5, the node currents are corrected to mimic the conditions if the

85

CHAPTER 4. POWER FLOW SOLUTION METHODS

voltage magnitudes of the PV nodes were correctly fixed to the values
given in Upv. To that end, the term Upv +exp(j ·arg(U[: npv])) repre-
sents the voltages with corrected magnitude, which is subsequently used
in the product Zpv,diag,inv �(⋆−U[: npv]) to calculate the compensation
currents that temporarily correct the further computations which do not
take the constant voltage magnitude of the generator nodes into account.
In line 6, the reactive power of the PV nodes is updated to reflect the
new state and to be able to return the reactive power on exit.
During the iterations, the reactive power is an additional state variable
and ideally converges to an eventual steady state, just like the voltage it-
self. This means that an additional convergence criterion ϵU,pv is needed
in line 7. Also, a set of convergence-enhancing measures like acceleration
factors (see section 5.1) can be applied to the iteration of the reactive
power only.
Real synchronous generators have reactive power limits, over or under
which their operation becomes unstable. In reality, the generator control
system will prevent this state by adjusting the output voltage by means
of the excitation system. This behavior could be modeled in addition,
either in every iteration step or after convergence. A frequently recom-
mended method is to convert the node to a PQ node with a reactive
power at the edge of the stable operation.

4.6.4 Shunt Elements
Impedances connecting a node directly to ground are called parallel or
shunt impedances. In a grid model, these impedances can appear for
several reasons.

1. They can be part of a π-line-model which represents a line segment
as one series impedance and two parallel impedances at the ends.

2. They can be discrete elements that are installed in the grid. In
practice, shunt inductors and capacitors are used to compensate
the voltage drop caused by long capacitive cables or inductive over-
head lines, respectively.

3. They can be a part of a (industrial) customer installation, where
shunt capacitors are often used to offset the lagging current caused
by inductive loads and thereby increase the power factor. In this
case, they are usually part of the customer load S, but could also

86

CHAPTER 4. POWER FLOW SOLUTION METHODS

be an explicit part of the grid model.

The integration of shunt capacitors or inductors is straightforward and
does not affect the computation characteristics. Of course, shunt el-
ements could render an otherwise stable power flow instance unstable
and influence the solution time that way.

Figure 4.18: Equivalent electrical circuit with a shunt admittance at node j

Figure 4.18 shows a node j in an electrical network which has a load Sj

and a parallel shunt impedance ZShunt,j . The current through the shunt
impedance is

IShunt,j =
U j

ZShunt,j

. (4.90)

Using the admittance Y Shunt,j = 1
Z

Shunt,j
of the shunt, this fits into the

standard admittance matrix Y without any further modifications. The
shunt admittance at the node is added to the corresponding entry of the
diagonal of Y, so that the line j reads, in part,

...

Ij

...

 =

.

Y i,j

(
Y Shunt,j − Y i,j − Y j,k

)
Y j,k

... . . .

...
U i

U j

Uk

...

(4.91)

From, there, the computations in any of the YBUS methods or the ZBUS
Jacobi method continues as normal.

87

CHAPTER 4. POWER FLOW SOLUTION METHODS

4.6.5 Asymmetry
As mentioned in section 3.1, the assumption of symmetry entails

1. the equal allocation of all loads onto the three phases,

2. identical line impedances in all phases, and

3. a neglect of the capacitances between the phases.

If one of those requirements can not be maintained, the grid model needs
to be formulated as a three-phase model. This can complicate the power
flow model and the subsequent solution considerably [1].
Problems with the first assumption, the equality of loads on the phases,
most frequently arise in low-voltage grids, where individual devices are
almost always connected to a single phase. In Germany, household and
commercial buildings are usually wired to distribute the loads as bal-
anced as possible, but sometimes, larger loads like electric vehicles or
PV installations are connected to only one phase, which can skew the
load distribution on the phases. This skew can only be simulated with
a three-phase model [21]. In less densely populated areas around the
world, a fully developed three-phase system is uneconomical, and so
one-phase systems are common, sometimes mixed with three-phase sys-
tems in a single grid. A combined simulation including both system then
also needs to consider an asymmetric grid.
Figure 4.19 shows a three-phase representation of a line and a connected
node with three loads. The parallel line impedances Zj,UV , Zj,V W , and
Zj,UW can be used to model the capacitances between individual con-
ductors in a cable or between separate cables or lines. Using the admit-
tances, the relationship between the voltages, powers and impedances at
the node j can be expressed in matrix form:

 S∗
j,U/U∗

j,U

S∗
j,V /U∗

j,V

S∗
j,W/U∗

j,W

 =

Y ij,U 0 0 −
∑

Y Y j,UV Y j,UW Y jk,U 0 0
0 Y ij,V 0 Y j,UV −

∑
Y Y j,V W 0 Y jk,V 0

0 0 Y ij,W Y j,UW Y j,V W −
∑

Y 0 0 Y jk,W

U i,U

U i,V

U i,W

U j,U

U j,V

U j,W

Uk,U

Uk,V

Uk,W

(4.92)

The sum of the admittances connected to a node
∑

Y is not written out
here. It can include the shunt admittances of each phase as well.
The resulting admittance matrix is in principle built like the single-phase

88

CHAPTER 4. POWER FLOW SOLUTION METHODS

Figure 4.19: Three-phase representation of a node j and two connected lines
ij and jk

admittance matrix in section 3.2, except that every entry is replaced with
a 3 × 3 submatrix.
This augmentation takes care of the three-phase line model with only
modifications to the admittance matrix and with no further require-
ments regarding the solution methods. However, with the assumption of
symmetry retired, the nature and values of the grounding at the nodes
becomes important. If the loads on the three phases are asymmetric, the
resulting current in the neutral conductor (the zero-sequence current) is
non-zero and flows back to the source (unless the neutral point is iso-
lated), often both through the grid via the neutral line impedances rep-
resented by Zij,0 and Zjk,0 and through the earth via the earthing resis-
tance represented by Zj,G. Table 4.6 shows the values of the impedance
between the neutral point of the node and the common ground of the

89

CHAPTER 4. POWER FLOW SOLUTION METHODS

grid ZG and the impedance between neutral points of connected nodes
Z0 for different earthing strategies in the electric grid.

Table 4.6: Properties of the four dominant earthing strategies in electric grids

Earthing ZG Z0 Application
Direct / Solid Earthing ZG ≈ 0 Z0 ≈ 0 HV & EHV grids,

TN systems in LV
grids

Low Impedance Earthing RG > 0 Z0 ≈ 0 One point in MV
cable grids

Peterson Coil XG > 0 Z0 ≈ 0 One point in MV
overhead line
grids

Isolated Neutral ZG = ∞ Z0 = ∞ Small area, high
reliability grids,
(IT system),
delta-connected
loads

A value of 0 for the impedance Z means it can not be directly translated
to an admittance Y , in this case the line has to be ignored altogether
and the two nodes connected by it have to be treated as equipotential.
The case of direct earthing (ZG ≈ 0, Z0 ≈ 0) is the most frequent case
in practice. In low voltage grids, the majority of grids in Europe uses
a TN-S or TN-C-S earthing system, the difference being an additional
path between neutral point and source through the earth for the TN-C-S
system, which is shown in figure 4.20. The relevant impedance between
the neutral points is therefore formed by the impedance of the PEN
conductor and the impedance through earth in parallel.

90

CHAPTER 4. POWER FLOW SOLUTION METHODS

Figure 4.20: Schematic of a low-voltage grid using the TN-C-S system

In medium and high voltage grids, the asymmetry of the loads is usually
small and the neutral current therefore negligible. Luckily, this case is
also the easiest to integrate into the power flow model. The earthing
doesn’t need to be considered at all, and the three lines in equation 4.92
model the behavior of the node completely.
All other earthing variants lead to an additional line in the admittance
matrix. A correct modeling of the earthing impedance in this case can
be very complicated, because the return path may lead through earthing
paths of other grids [114]. Also, the exact inductance value of Petersen
coils may change during operation, as the inductance is kept in resonance
with the line capacities.
The powers at the nodes are necessarily seperated onto the three phases,
and so three-phase power data is required.
Finally, a three-phase model necessarily leads to three separate slack
nodes. The voltages of the phases differ at least in their phase, but
may also have different amplitudes. This means that the restrictions for
grids with multiple slack nodes mentioned in section 4.6.2 all apply to
three-phase grids as well.

4.6.6 Multiple Voltage Levels
The integration of multiple voltage levels into one power flow model can
be achieved without much friction by referencing all physical values to
a base value. The resulting quantities have no physical unit and are
usually referred to as per-unit-values. The first step of a conversion to
the per-unit system is the choice of a base voltage UBase, which defines 1
per unit, or 1 p.u. The base voltage Ubase is frequently chosen equal to

91

CHAPTER 4. POWER FLOW SOLUTION METHODS

the slack voltage Uslack, but this is not a mathematical requirement.
In order to coherently scale voltages, currents, powers, and impedances,
one additional base value must be chosen, usually a base power SBase.
The choice of value for the second base value is completely arbitrary, but
it makes sense to choose a roughly suitable power in the operating range
as base power. With these, IBase and ZBase can be computed with

IBase = SBase√
3 UBase

(4.93)

ZBase = UBase√
3 IBase

(4.94)

Many papers and books use pu-values and therefore take the possibility
of multiple voltages in a grid into account, although many practical
power flow computations do not require it. The computation of the pu-
values is an unnecessary step in these cases.
However, beyond a constant overhead for the scaling to pu-values and
back, the performance of all power flow methods should be unaffected.
Rounding errors due to overall lower values are not a problem if standard
floating point types are used, which have a nonlinear distribution of
possible values along their range.
When multiple voltage levels are involved in a grid model, the modeling
of the transformer is usually the more complicated task.

4.6.7 Transformers
In many power flow simulations, the transformers are the boundaries
of the grid model and simply modeled as slack nodes. This ignores the
voltage drop that is caused by the impedances of the transformer itself.
In many practical applications, this is not a problem, e.g. when the
voltage profiles of different scenarios are compared. However, when the
power flow model should emulate the real grid as closely as possible, the
transformer can be included in the model. If the model spans multiple
voltage levels, the integration of a transformer model is inevitable.
Including a transformer only affects the power flow model, not the so-
lution methods themselves. Figure 4.21 shows a common transformer
model [79], [81] which features six individual parameters that can be
combined into three impedances. In the power flow model, the whole
transformer model can be represented by 2 lines and 1 node.

92

CHAPTER 4. POWER FLOW SOLUTION METHODS

Figure 4.21: Equivalent circuit of a common transformer model

The physical values of one of the transformer coils need to be scaled by
n2 to use them in a grid model with a different operating voltage. In the
example in Figure 4.21, the values U ′

1, R′
1, and L′

σ,1 on the primary side
are scaled from the original values.
The impedances of the lines and the shunt impedances are then

ZT,1 = R′
1 + 2πjfL′

σ,1 (4.95)
ZT,2 = R2 + 2πjfLσ,2 (4.96)

ZT,Shunt = 1
1

RF E
+ 1

2πfLM

. (4.97)

In the node-based grid model, the transformer is then represented by
the two lines and one node in Figure 4.22.

Figure 4.22: Equivalent circuit of a common transformer model

The shunt impedance can be integrated into the admittance matrix Y
as explained in section 4.6.4.
An even simpler transformer model is a single line with a combined
impedance ZT = ZT,1 +ZT,2, ignoring the shunt impedance. The model
could also effecitvely be transformed into a pi-model by distributing
ZT,Shunt on the outer nodes.

93

CHAPTER 4. POWER FLOW SOLUTION METHODS

The computational overhead caused by inclusion of a simple transformer
model is minimal. However, some transformers can have additional fea-
tures like tap-changers or variable phase-shifting capabilities [84], [32].
These can add even more complexity to the grid model, but the added
model fidelity is rarely needed in steady-state applications, especially in
distribution grids.

4.7 Handling of Convergence Problems
The term convergence has been introduced in section 3.4 and is part of
every iterative power flow algorithm as the ’convergence criterion’ which
stops the iterations if the calculated U(k) solves the power flow equation
3.12 to a pre-chosen accuracy ϵ. The mathematically correct definition
of convergence is however much more rigorous and very hard to apply
to the power flow problem in a general way, for two reasons:
First, convergence is technically a property of an infinite sequence. The
results of iterations like the ones during a power flow solution form a
sequence, and if that sequence gets arbitrarily close to a certain value as
the iterations go on infinitely, the sequence is called convergent. If the
sequence of iterations results grows towards ∞ or −∞ or reaches an un-
damped oscillation, the sequence is called divergent. The requirement of
these properties for infinite lengths of the sequence and arbitrary close-
ness makes these conditions impossible to verify using numerical tools.
Second, since the convergence of a power flow algorithm applies to a
sequence of vectors (e.g. S(k)

R ∈ Cn), the aforementioned ’closeness’ is
usually evaluated using a vector norm (e.g., the maximum norm ‖·‖∞).
The associated convergence is called norm convergence, as opposed to
the more mathematically strict pointwise convergence. This makes the
convergence behavior of power flow algorithms even harder to reason
about in a general, mathematically rigorous way for both fixed-point
and root-finding methods.
Luckily, in real, practical applications, a mathematically rigorous check
for convergence is almost never required. The pragmatic convergence
criteria listed in section 3.4 are widely accepted to indicate a ’correct’
solution. In much of the available literature on power flow, a power flow
instance with a satisfied convergence criterion is colloquially denoted as
convergent, and a power flow solution sequence that does not satisfy the
convergence criterion after a certain, freely chosen number of iterations

94

CHAPTER 4. POWER FLOW SOLUTION METHODS

as divergent.
An instance of a power flow computation can, in this colloquial sense,
diverge for three reasons:
First, if the initial solution U(0) is chosen badly, an existing solution
might not be found using the standard procedure of iterations. This
indicates that the power flow function is not generally convex and that
a region of attraction around the eventual solution exists. There exist
numerous theoretical examinations of this phenomenon [123][76], but in
practice it is often sufficient to employ an additional initialization step
to find a new, better initial value U(0) for the actual power flow iter-
ations. Probably the most popular method for the initialization is DC
power flow, which reduces the power flow equations to the relation be-
tween voltage angle and active power flows [105]. This model reduction
implies the assumption of dominating line reactances over resistances,
which is usually true for transmission grids, but does not hold for lower
voltage distribution grids. For distribution grids with a non-negligible
resistance, another simple possibility to reach the region of attraction is
to reduce the load on the system by a certain factor and bringing the
factor back to 1 over the course of the iterations [119].
The second reason for divergence during a power flow computation is
the non-existence of a solution. Physically, this means that the instance
represents a case where the voltage collapses, leading to a local blackout.
There is of course nothing to be done to ’help’ convergence in this case.
It is generally desirable to recognize a case of voltage collapse as early
as possible, which can be achieved with additional ’divergence criteria’,
such as min(|U(k)|) < 0. Iwamoto [55] presents a method to use the line-
search parameter of the Newton-Raphson method (see Subsection 5.1.2)
as an indicator for divergence. However, an additional criterion intro-
duces a constant overhead and an additional branch into the program.
In practice, a maximum number of iterations after which the iterations
are stopped, and the solution is flagged for further processing, is a suffi-
cient solution and implemented by most available power flow packages.
Finally, the third reason for non-convergence is numerical problems in-
ternal to the method. As with all numerical computations, the discrete
nature of the floating-point representation inside the computer almost
certainly leads to minor inaccuracies. These inaccuracies can be greatly
amplified by numerically ill-conditioned operations during the computa-
tion. While every mathematical operation has a numerical conditioning
associated to it, the operation where it is most likely a problem is the
solution of a linear system Ax = b, which occurs during every itera-

95

CHAPTER 4. POWER FLOW SOLUTION METHODS

tion step of the Newton-Raphson method. In this case, the condition
number κ of the Jacobi matrix is a measure for the amplification of
rounding errors. The potential error introduced by ill-conditioned oper-
ations is related to the rounding that actually takes place, which is in
turn determined by the floating-point accuracy of the computation. The
first power flow computations in the sixties were conducted using 10 bit
floating-point numbers [6], which provided roughly two to three signif-
icant digits. With condition numbers greater than around κ = 1000,
which can occur in admittance matrices derived from real grids with
both large and small impedances, the inaccuracies introduced by this
rounding could indeed lead to problems with convergence. Modern soft-
ware uses at least 32 bit floating-point numbers by default, which have
around 8 significant digits and can use 64 bit numbers as an option,
which have around 15 significant digits. A lack of floating-point preci-
sion was for example identified as the cause for non-convergence of the
IEEE 43 bus test system [55]. Using 64 bit floats, the solution is found
without problems. With these modern floating-point formats, problems
with numerical condition can only occur with Jacobi matrix condition
numbers in the range of 108 and 1015, respectively. These is only the
case in huge grids or grid situations with extreme differences in imped-
ances or wildly different voltages in the same grid, which can occur in
situations close to voltage collapse.
In 2001, Wang et al. [119] investigated five instances of problems with
the numerical condition reported by other papers. Two of the cases con-
verge without any problems, suggesting that the original authors had
errors in their programs, another case has a grave data parsing error,
and one case represents a completely overloaded system which has no
solution. The remaining case, from [113], is found to develop a Jacobian
with a high condition number of the course of the iterations and, in fact,
fails to converge. However, the chosen load in the system is extremely
close to the point of overloading (99.8%) and represents a case right on
the edge of stable operation where the Jacobi matrix becomes close to
singular. In such a case, it is not clear whether the numerical effect of
the condition has an impact on the convergence or divergence behavior
at all.
Modern CPU hardware has 64 bit floating-point units as standard, as
well as BLAS and LAPACK packages with built-in condition control
including automatic pre-conditioning, partial pivoting as well as correc-
tions for numerical stability. Using these tools, internal numerical prob-
lems can almost always be avoided without explicit changes to the YBUS

96

CHAPTER 4. POWER FLOW SOLUTION METHODS

Newton-Raphson method. Power flow methods which do not employ
the solution of a system of linear equations, like all the other methods
outlined in this thesis, are not impacted by problems with numerical
condition at all.
In practice, the optimal design of methods for convergence checking and
control is a complex problem which depends greatly on the nature of
the power flow problem at hand. If no specific issue about the prob-
lem is known, the best approach from a performance point of view is to
just count the iterations and break out of the function after an arbitrar-
ily preset number of maximum iterations is reached. Problems which
are flagged in this way can then be further processed using different ap-
proaches to attempt to find a solution if one exists. When the power flow
is running, any further checks would exponentially increase the chance
of cache misses, especially in the TLB, branch misprediction and other
penalties for CPU performance outlined in chapter 2.

97

CHAPTER 4. POWER FLOW SOLUTION METHODS

98

Chapter 5

Computational
Optimization Approaches

After the basic power flow solution methods have been covered in the
previous chapter, this chapter introduces several modifications to the
methods that promise further performance optimization. In general,
these techniques can be classified into lossless and lossy optimizations:

• Lossless Optimizations:
These are modifications to the model or the algorithms that aim
to improve the runtime without a loss in precision of the solu-
tions compared to the non-modified algorithms. However, they
might also make the solution slower for some power flow tasks, if
the problem is not well suited to the technique. Specifically, the
presented approaches are:

– Acceleration Factors and Line Search (Section 5.1),
– Sparse Matrices (Section 5.2),
– Lossless Grid Reduction (Section 5.3.1),
– Parallelization (Section 5.5).

• Lossy Optimizations:
These are modifications or complete replacements of algorithms
that aim to trade an - hopefully acceptable - amount of precision
for improvements in runtime. These should only be applied when

99

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

a confident estimation for the required precision is available. The
presented lossy approaches are:

– Lossy Grid Reduction (Section 5.3.2),
– Weak Load Detection (Section 5.4).

A factor to consider in advance for every optimization approach is the
constant overhead associated with many of the optimization approaches:
if the problem to be solved involves a grid with few nodes and only a
few separate load scenarios, an extensive analysis of the optimization
potential might not be worth it.
However, the potential of these optimization can be substantial if the
problem has to be solved continuously as part of online system, especially
on lower-end hardware, e.g. on an industrial computer in a substation.

5.1 Acceleration Factors

5.1.1 Acceleration of the YBUS Gauss-Seidel method
The concept of acceleration factors was applied to the YBUS Gauss-
Seidel method since its inception [39][14], as it is a popular optimization
approach for Gauss-Seidel methods in general. It was found that the rate
of convergence can be increased by augmenting the YBUS Gauss-Seidel
iteration rule 4.13 with a factor α ∈ R, α > 1 as follows:

U
(m+1)
i = U

(m)
i + α

Y ii

 S∗
i

U
(m)∗
i

−
i−1∑
j=1

Y ijU
(m+1)
j −

n∑
j=i

Y ijU
(m)
j

 ,

(5.1)
∀ i = 1 . . . n.

This is analog to an extrapolation of each voltage update step by a
constant factor. Figure 5.1 shows the potential reduction in iteration
count for a simple power flow problem with four single-feeder grids with
5, 10, 20, and 30 nodes. This is a worst-case scenario for YBUS fixed-point
methods, as their convergence speed is related to the diagonal dominance
of the matrix Y [79][63], which is worst for single-feeder grids, as they
have the lowest possible number of entries in Y. The minimal number
of iterations for each node count is indicated with a larger circle.

100

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

1.0 1.2 1.4 1.6 1.8

Acceleration Factor / -

0

500

1000

1500

It
er
a
ti
o
n
s
/
-

5 Nodes

10 Nodes

20 Nodes

30 Nodes

Figure 5.1: Number of iterations for different acceleration factors α in a single-
feeder grid with varying number of nodes

The potential for optimization is profound: In the 30-node single-feeder
grid, the necessary number of iterations drops by a factor of 21.4, which
directly translates to an equivalent speedup, as shown in figure 5.2. This
is however a best-case scenario, the improvement is usually smaller in
more complex grid topologies.

1.0 1.2 1.4 1.6 1.8

Acceleration Factor / -

0.0

0.5

1.0

1.5

R
u
n
ti
m
e
/
s

5 Nodes

10 Nodes

20 Nodes

30 Nodes

Figure 5.2: Runtime in seconds for different acceleration factors α in a feeder
grid with varying number of nodes

101

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

The correct choice of acceleration factor therefore can have a significant
impact on the runtime, however, it is not obvious how such a choice
should be made. If α is too large (in the example case, α > 1.9), the
iterations can overreach and start to oscillate, leading to a sharp increase
in runtime or no convergence at all. A conservative approach is a safe,
constant factor α, a frequently cited choice is α = 1.6 [39][14], although
this can be too great for larger, more complex grids (see section 6.3).
A slightly different way to accelerate the Gauss-Seidel method was pre-
sented by J.Treece in 1969 [110]. Its core idea is the ”boosting” of the
power S, controlled by the power mismatch at every iteration step by
replacing S with

S(m)
Boost = S + B S(m)

R , (5.2)

where B ∈ R is a predetermined scalar factor and SR is the difference
between the given powers at the nodes and the powers that would result
from the voltages in the current iteration

S(m)
R = S − U(m) � Y U(m). (5.3)

This term is also used for convergence control when ϵS is used as the
convergence criterion. The discussion on Treece’s paper [64] - a series
of comments from peers was printed together with every IEEE Transac-
tions journal paper at that time - highlights some of the problems with
the method. The choice of boost factor is very sensitive to the exact
power flow problem and can lead to non-convergence very easily. The
boost method works best in large, weakly loaded grids (> 500 nodes), a
class of problems that is better served with a YBUS Newton-Raphson or
ZBUS Jacobi method.
The accelerated Gauss-Seidel method is also somewhat similar to the
general Successive Over-Relaxation (SOR)-method [15], but the addi-
tional factor (1 − α) on the value U

(m)
i is missing.

5.1.2 Acceleration of the YBUS Newton-Raphson
method

As the Newton-Raphson method is a popular general-purpose optimiza-
tion method, there exist numerous general approaches to accelerate its
convergence. The equivalent of acceleration factors for the Newton-
Raphson method is line search. The rationale here is that, while the step
direction found by an iteration of the Newton-Raphson method cannot

102

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

easily be improved, the step size can. This might lead to fewer iteration
steps, but comes at the cost of a constant overhead per iteration.
In the Newton-Raphson method (algorithm 4), the optimization proce-
dure for α has to occur before the final voltage update in line 6, which,
including the acceleration factor, then reads

U = (|U| + α∆|U|) · ej(ϕ+α∆ϕ). (5.4)

The search for the optimal α is more complicated than for the YBUS
Gauss-Seidel method and involves a separate optimization procedure for
every iteration.
In practical power flow applications, the potential for runtime improve-
ments using line search approaches is limited. The fundamental problem
of line search for the YBUS Newton-Raphson method is that the method
usually already needs very few iterations in the first place. As section 4.5
showed, the method converges in one or two steps even for non-trivial
problems. The line search procedure would have to cut at least one it-
eration from that in order to provide a performance boost. This is only
realistically possible for huge grid models.
As an example for such a huge model, Figure 5.3 shows the optimal α for
every iteration during the solution of a power flow problem in a generic,
weakly meshed medium voltage grid with 3000 nodes (see Appendix C.2
for more details). The solution with the YBUS Newton-Raphson method
needs 7 iterations, but a line-search procedure does not accelerate it even
in this case.

103

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

Figure 5.3: Potential of line-search optimization for the Newton-Raphson
method for a generic, weakly meshed medium voltage grid with 3000 nodes

Every marker in this plot represents the average absolute power mis-
match after an iteration using the acceleration factor α on the x-axis,
and markers belonging to an iteration are grouped in a line. A non-
accelerated YBUS Newton-Raphson method is on this plot represented
by a progression on the vertical line at α = 1.00 down towards an abso-
lute power mismatch lower than the converge criterion ϵS = 0.1VA.
The line search further optimizes every iteration step, leading to a
slightly lower mismatch compared to the default choice α = 1 (the low-
est mismatch features a bigger marker). This procedure is only worth
it if one iteration step can ultimately be skipped, and the power flow
converges in fewer iterations. This is not the case even in the 3000-node
computation in Figure 5.3.
However, although it does not help with performance, the line search
procedure can be used to strengthen the robustness of the YBUS Newton-
Raphson method [77][94]. Iwamoto [55] used line search to establish a
criterion for divergence.

5.2 Exploiting Sparsity
In theory, the maximum number of lines in an electric network with n
nodes is (n2 − n)/2. In reality, electric grids have considerably fewer
lines and so the admittance matrix Y contains a considerable amount
of zeros. From very early on in the history of power flow computations,

104

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

researchers tried to exploit this fact by employing sparse matrix storage
schemes [95]. Because the computers at the time had slow and very lim-
ited memory, this enabled faster computations, especially when applied
to larger grid models.
The basic idea is intuitive: Store only the non-zero values plus informa-
tion about their location in the matrix. Alongside the reduced storage
space, sparse storage techniques can also lead to better performance of
matrix operations, because the number of individual, scalar operations
can be greatly reduced. However, these operations are usually more
erratic from the CPUs point of view, and many of the automatic com-
putational optimizations described in section 2.2 can not be applied as
effectively. For computations involving very large sparse matrices (say,
n > 10,000), sparse matrix techniques are essential, but for very small
matrices (say, n < 10), they almost always lead to worse performance.
Somewhere in between, there is a break-even point for sparse methods,
where the reduced amount of individual operations makes up for the
additional overhead and the less ideal use of the CPU pipelines and
caches. For the computers used by the researchers who first explored
sparse techniques in the 70s, this break-even point was probably very
low, so that they experienced great speedups and recommended sparse
matrix techniques for all power flow computations. Today, this is not
true anymore, the efficiency of modern CPUs in uniform, predictable
operations like matrix multiplication has pushed the break-even point
considerably upwards.
There are many different sparse matrix storage schemes [86][41]. The
tested schemes were Compressed Sparse Row (CSR), Compressed Sparse
Column (CSC), and Coordinate List (COO), all of which performed
very similarly.
In the presented power flow algorithms, the only two matrix operations
are matrix multiplication and the solution of a linear system in the
YBUS Newton-Raphson algorithm. Even if these operations profit from
a sparse matrix formulation, that does not automatically mean a perfor-
mance boost for the entire algorithm. For smaller grids, the conversion
overhead can be too high, and the efficiency of modern libraries and
CPUs with uniform vector and matrix computations can ultimately
mean a significantly better performance using the dense formulations.
Where exactly the break-even point of sparse formulations for power
flow computations lies, depends on the algorithm and the exact problem.
The following benchmarks for the ZBUS Jacobi method and the YBUS

105

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

Newton-Raphson method aim to give some indication.

5.2.1 Sparse ZBUS Jacobi Method
The ZBUS algorithm contains only one matrix multiplication, Z I, which
is the computational centerpiece of the entire algorithm. Because Z is
constant between iterations and even between different invocations of
the algorithm with different powers S, the conversion to a sparse formu-
lation occurs only once and poses no performance problem. However,
the inverted admittance matrix Z is usually not very sparse. Single
feeder or highly meshed grids can even lead to a completely filled Z, so
that a sparse formulation makes little sense.
For a radial low voltage grid, Figure 5.4 shows the runtime of four dif-
ferent implementations of ZBUS Jacobi: a standard, non-sparse version,
and implementations using the CSR, CSC, and COO sparse matrix for-
mulations for Z, respectively. The grid has a varying number of nodes,
the loads were a set of randomly chosen powers from a standard beta
function for households. The runtime is the total computation time for
35040 individual power flow problems.

25 50 75 100 125 150 175 200

Number of nodes in grid / -

0

1

2

3

4

5

6

R
u
n
ti
m
e
/
s

non-sparse

CSR

CSC

COO

Figure 5.4: Runtimes of ZBUS methods with different sparse matrix storage
schemes in a radial grid with 35040 load cases. The CSR, CSC, and COO
runtimes are nearly identical

For this best-case scenario, the results show that the non-sparse version
is significantly faster up to around 80 nodes, at which point the advan-

106

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

tages of the sparse formulation overcome the raw optimization of the
non-sparse version. This threshold is however dependent on the exact
grid topology and is usually higher for more complicated meshed grids.
The different formulations for sparse matrices differ very little from each
other.

5.2.2 Sparse YBUS Newton-Raphson Method
For the YBUS Newton-Raphson method, the break-even point for sparse
matrix storage methods occurs at even larger grid sizes. Two matrices
inside the Newton-Raphson algorithm can be represented as sparse ma-
trices: the admittance matrix Y and the Jacobi matrix J. Y is used in
the matrix multiplication E Y U, which is performed once per iteration,
and J is used to finally compute the iteration steps with the solution of
the linear system [Pmis Qmis]T = J [∆ϕ ∆|U|]T in line 5 of algorithm
4. The COO-representation of sparse matrices does not directly permit
a solution of linear systems, so it is omitted. Figure 5.5 shows the run-
time of the sparse CSR and CSC representation against the non-sparse
version. The grid is a radial low-voltage grid with an increasing number
of nodes, and runtime was determined for 350 individual load scenarios.

0 50 100 150 200 250 300

Number of nodes in grid / -

0.0

2.5

5.0

7.5

10.0

12.5

15.0

R
u
n
ti
m
e
/
s

non-sparse

CSR

CSC

Figure 5.5: Runtime of YBUS methods with different sparse matrix storage
schemes. Measured with a radial low-voltage grid and a time series with 350
loads

The break-even point for the sparse versions in this case is around 200
nodes. The CSR version has an advantage over the CSC version for

107

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

larger grids.
In summary, the sparse-matrix versions of the ZBUS Jacobi and the YBUS
Newton-Raphson method only have performance benefits if the grid is
sufficiently large. For most distribution grids, the regular, dense formu-
lation is more performant.

5.3 Grid Reduction Methods
Model reduction is an obvious candidate for a method to increase the
computation speed of any simulation. As mentioned in section 3.1, the
power flow model used in the previous chapters is already the result
of several reductions in model order and complexity. A further reduc-
tion can lead to smaller vectors and matrices, therefore better usage of
caches and fewer computations in general. There are general methods
to reduce the order of arbitrary mathematical models, but for electric
grids, several effective reduction schemes can be formulated by looking
at the topology of the grid alone.
The most trivial of those schemes is the deletion of nodes that are com-
pletely irrelevant for the computation. Although it seems superfluous
to have those nodes in the power flow model in the first place, they oc-
cur surprisingly frequently in grid models that stem from sources whose
primary purpose is not the electrical accuracy, but e.g. the exact geopo-
sitions of the equipment. Lossless grid reduction methods which elimi-
nate these nodes can change the number of nodes and the topology of
the grid, but never the result of a power flow computation beyond the
removal of redundant information.
Lossy grid reduction methods also aim to reduce the number of nodes
and lines, but in turn sacrifice some accuracy. With these, as with all
lossy methods, a cost-benefit assessment has to be conducted before ap-
plying the method.
In practice, the usage of a grid reduction method also means a little
overhead for the reduction method itself and the re-ordering and re-
assignment of the nodes after the power flow computations, unless the
subsequent operations can proceed with the reduced dataset.

5.3.1 Lossless Grid Reduction Methods
The lossless grid reduction methods have the goal of eliminating nodes
and lines which contribute nothing to the solution of the power flow

108

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

and whose elimination leaves the relevant results of the computations
unchanged. Basically, a node can be eliminated if it

1. has no load attached to it and

2. is not a slack node and

3. is not a junction (has three or more lines attached to it).

This leaves two variants of nodes: transit nodes (two lines attached)
and end nodes (one line attached). Finding and eliminating these nodes
using the admittance matrix as a data structure is not ideal, because
it changes the size of the matrix multiple times, causing a number of
costly copy operations in memory. If possible, these grid reduction
methods should be carried out in a preliminary data structure. The
exact algorithm formulation depends on that data structure.
The lossless reduction of these nodes can be carried out in multiple
atomic steps, each removing only one transit or end node until no fur-
ther reduction is possible.
Figure 5.6 shows the (trivial) atomic operation of end node removal.

Figure 5.6: End node reduction: removal of unnecessary nodes at the end of
lines

Figure 5.7 shows the atomic operation of the transit node removal, where
two lines are combined into a single line with impedance Z13 = Z12+Z23.

Figure 5.7: Transit node reduction: removal of unnecessary nodes in the middle
of lines

109

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

Although it seems trivial, an efficient implementation involves several
iterations through the nodes and the lines. The two operations can
be performed together, so that each node is first checked for end node
removal (one connected node), and then transit node removal (two con-
nected nodes). The lossless reduction is applied in section 6.1.

5.3.2 Lossy Grid Reduction Methods

Lossy grid reduction methods employ similar atomic operations. How-
ever, the removed elements actually have an influence on the power flow.
To minimize the error caused by this reduction, the powers at the re-
maining nodes can be modified.
Again, there are two atomic operations that can be applied iteratively
until the grid is reduced to a desired degree. Figure 5.8 shows the atomic
operation of lossy transit node reduction.

Figure 5.8: Atomic operation of lossy transit node reduction: A segment with
three nodes and two lines is reduced to two nodes and one line

In order to eliminate the middle node 2 of the three-node segment, the
impedances Z12 and Z23 need to be combined into one and the power S2
needs to be distributed to the remaining powers S1 and S3. The choice
of

Z13 = Z12 + Z23 (5.5)

is rather trivial, as the reduced grid segment should behave identically
to the rest of the grid as the non-reduced segment with two lines. By
choosing e.g.

Ŝ1 = S1 + Z23
Z12 + Z23

S2 , and (5.6)

Ŝ3 = S3 + Z12
Z12 + Z23

S2 , (5.7)

110

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

the load of node 2 is distributed to the two other nodes. The voltage
drop over the reduced line segment is of course slightly different. This
error is proportional to the power S2. When selecting which grid seg-
ment to reduce, the segment with the low power S2 should therefore be
chosen.
Figure 5.9 shows the lossy end node reduction.

Figure 5.9: Atomic operation of end node reduction: a segment with one line
and two nodes, one of which has no further connections, is reduced to one
node

In this example, the power S2 of the deleted node as well as the power
SLoss,12 that would be caused by the current flowing through the
impedance Z12 needs to be represented as accurately as possible by Ŝ1:

Ŝ1 = S1 + S2 + SLoss,12 (5.8)

Ŝ1 = S1 + S2 + Z12

(
S2
U2

) (
S2
U2

)∗

(5.9)

Ŝ1 = S1 + S2 + Z12

(
|S2|
|U2|

)2

(5.10)

Of course, at the time of the grid reduction, U2 is not known and has
to be approximated. The simplest approximation is U2 = U0, but a
safer assumption would be setting U2 to the lowest point of acceptable
operation, e.g. U2 = 0.9 Uslack. This ensures that the approximation
made by the grid reduction operation does not qualitatively change the
result in terms of lower limit norm violations: If the real voltage U2 is
greater than 0.9 Uslack, S2 will be overestimated, so that the voltage at
node 1 is actually lower than the voltage at node 2 in the non-reduced
grid, but never to the point of pushing U2 below the chosen boundary
voltage. That way, the qualitative property of whether the grid voltages
are above safe lower operational bounds is preserved.

111

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

In the case of negative loads and potential violation of upper voltage
bounds, an approximation U2 = 1.1 Uslack is also possible. If there is
uncertainty about the nature of the load, the computation could also be
executed twice, once for the approximation with a lower and once with
an upper bound.
Additionally, the assumption for U2 can be used to estimate the voltage
drop over the impedance Z12 and therefore a criterion for which node to
reduce first via this method. With an assumption for the maximal load
S2,max at node 2, the expected voltage drop Uexp can be calculated to

Uexp = Z12

(
S2,max

U2

)∗

. (5.11)

Among the candidate nodes for end node reduction, the node with the
lowest expected voltage drop should be reduced first.
With these two atomic operations, a grid reduction algorithm can be
designed in multiple ways. The decision which nodes to reduce first in
the grid and when to stop is an optimization problem in itself. In general,
the transit node reduction is the less intrusive method and should be
preferred whenever possible.
There is no hard limit to this lossy reduction until the grid consists of
just one node. In most cases however, this will probably come at an
unacceptable cost of accuracy. Therefore, a criterion for an acceptable
degree of reduction is required. The simplest criterion is the number
of nodes left (see also section 6.1), but more complex criteria like Uexp

or an upper bound on the joined impedance Z13 could be chosen. The
choice depends highly on the specific problem at hand.
Section 6.1 shows an application of lossless and lossy grid reduction
methods and demonstrates the potential performance gains.

5.4 Weak Load Detection

In practice, power flow computations are often applied to time series
in order to find violations of standards and the edges of safe operation.
These critical situations usually only occur for a select few time steps, so
the simulations to find them often contain a large set of load conditions
which are far from critical and therefore uninteresting for the actual pur-
pose of the simulation. This is frequently the case when the input loads
are large time series datasets and include nighttime, weekends, and hol-

112

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

idays. The idea of weak load detection techniques is to identify those
time steps and ’bypass’ parts of or the entire power flow computation in
these cases. Instead, these cases can be deleted entirely, or a completely
’flat’ (all voltages U = Uslack) solution can be assumed. The latter has
the practical advantage that the matrices containing the values do not
need to be resized, and that the total number of solutions (i.e. voltage
vectors) stays the same, which might be important for statistical consid-
erations.
There are two ways to implement weak load detection: as a separate
decision algorithm which sorts out problems before the power flow com-
putation even starts, and as an additional convergence criterion, which
terminates the algorithm prematurely when it is predictable that the
resulting voltage will be within certain bounds. Both approaches need
to be carefully applied with special attention to the interpretation of the
raw results. In general, the second approach, a modified convergence
criterion, is easier to correctly apply than the first, the separate detec-
tion.
Section 6.2 contains a practical application of a slightly modified separate
weak load detection to reduce the runtime of a large-scale simulation.

5.4.1 Separate Weak Load Detection

The simplest way to implement a weak load detection method is as
a separate procedure, which checks every time step of a time series
computation before the power flow computation is run. The goal of
that procedure is to quickly deduce from the given loads if the resulting
voltages are safely within certain bounds or not. Algorithm 11 shows an
implementation of this principle in lines 2 and 3, using a predetermined
cutoff value Sbreak which is explained below.

113

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

Algorithm 11 ZBUS Jacobi Method with separate weak load detection

Input: Y, Sall, U(0), Uslack, Sbreak, ϵS

1: Z = Y−1

2: for S in Sall do
3: if sum(abs(S)) < Sbreak then
4: return U(0)

5: loop
6: I = (S � U)∗

7: if ‖U � I∗ − S‖∞ < ϵS then
8: break loop
9: U = Z I + Uslack

return U

The weak load criterion in line 2 (sum(abs(S)) < Sbreak) is in this case
a lower bound on the sum of the absolute loads, which is very fast to
evaluate. If the sum of the loads is below the given bound Sbreak, the
computation is stopped right there and the initial value of the voltage is
returned. There are of course other plausible criteria. The chosen deci-
sion value, in this case Sbreak, must be chosen mindfully and ultimately
depends on the topology and impedances of the grid. The best way to
find a suitable value is either to look at previous simulation results in
the same grid (see below) or to perform a dedicated simulation run with
selected values to find an absolute bound on Sbreak (see section 6.2).
Regarding the correctness of the weak load criterion, the number of
false negatives - load scenarios that are superfluously exactly computed
although the voltage is within these safe bounds - should be minimized,
but false positives - load scenarios which are erroneously detected as
safe but are really not - need to be avoided at all cost. Ideally, the
method should calculate an easy-to-compute indicator from the set of
loads which has a high correlation to the ”worst” voltage in the grid.
As an example, Figure 5.10 shows a cloud of points which each repre-
sent a load condition on the network. The y-coordinate is the sum of
absolute loads - the weak load criterion Sbreak is then horizontal line on
the graph, and all points below that line are bypassed by the algorithm.
The x-coordinate is the minimal resulting voltage in the grid, which
is one possible criterion for the correctness of the weak load criterion.
The black line is positioned at 0.99 pu, or a maximal voltage drop of 1%.

114

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

104 105 106 107 108 109 110 111

Minimum Voltage in Grid / kV

133.4

133.6

133.8

134.0

134.2

S
u
m

o
f
L
o
a
d
s
in

G
ri
d
/
G
V
A Negatives: 86% False Negatives: 9%

False Positives: 0 Positives: 4%

Figure 5.10: Correlation between the sum of all loads and the minimal voltage
in the grid for a real high voltage grid with 110 nodes and 8064 loads

An ideal weak load detection would detect all points right of the black
line, but in reality, the simple criterion used here can only detect the
cases below the red line. This separates the cloud of points into four
quadrants:

• The Negatives (upper left, blue points), load conditions which have
a higher sum of loads than the bound and therefore are normally
computed by the power flow method. There is no speed up for
these loads, only a slight overhead for the evaluation of the weak
load criterion.

• The False Negatives (upper right, light green points), load condi-
tions which also have a higher sum of the loads than the bound and
are therefore normally computed. Looking at the results however,
these load conditions did not lead to a voltage drop of more than
1%, so in theory, the solution could have been bypassed. A better
weak load criterion might be able to catch these load conditions.

• the Positives (lower right, dark green points), load conditions
which were correctly identified by the weak load criterion as low-
load scenarios which do not merit a full computation.

• The False Positives, (lower left, no points), load conditions which
were wrongly identified by the weak load criterion, although their
maximal voltage drop was greater than 1 %. In this example, the
bound was intentionally chosen after the fact so that no points

115

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

are in this quadrant, in order to show the maximum potential of
the method. An a priori choice of the weak load criterion is not
straightforward.

As Figure 5.10 shows, the runtime optimization potential in this real
example is just 4%, even if the constant overhead for the weak load cri-
terion is ignored. Section 6.2 shows an example in which a separate weak
load detection is applied to greater effect to a Monte-Carlo simulation.

5.4.2 Modified Convergence Criterion
The idea of bypassing a solution for obviously uncritical load scenario can
also be directly incorporated into a power flow algorithm with a modified
convergence criterion. If the computed voltages in the first iteration are
already far from any critical region, this is unlikely to change in the
remaining iterations. Of course, this highly depends on the power flow
method used. In fact, in any other than the YBUS Newton and the
ZBUS Jacobi methods, the iteration progression is likely too uneven and
unpredictable to prevent major problems with false positive solutions.
Algorithm 12 shows how the ZBUS Jacobi algorithm can be modified
with an additional breaking condition in lines 7 and 8 using a cutoff
value Ubreak.

Algorithm 12 ZBUS Jacobi Method with modified convergence criterion

Input: Y, S, U(0), Uslack, Ubreak, ϵS

1: Z = Y−1

2: m = 0
3: loop
4: I = (S � U)∗

5: if ‖U � I∗ − S‖∞ < ϵS then
6: break loop
7: if m == 1 and |min(U)| > Ubreak then
8: break loop
9: U = Z I + Uslack

10: m = m + 1
return U

Figure 5.11 shows the results for the same 110-node high voltage grid
and 8064 loads as used in Figure 5.10, using a cutoff value Ubreak =

116

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

0.99 Uslack. The sum of absolute powers on the y-axis and the bound
visualized by the red line in Figure 5.10 is not used in this algorithm.

104 105 106 107 108 109 110 111

Minimum Voltage in Grid / kV

0.2

0.4

0.6

0.8

1.0

S
u
m

o
f
L
o
a
d
s
in

G
ri
d
/
G
V
A

86% Negatives

4% False Negatives

10% Positives

Figure 5.11: Example result of power flow ”short-circuiting” with a modi-
fied convergence criterion in a ZBUS power flow method: dark green points
represent successfully detected weak load scenarios.

In the presented example, 10% of power flow computations could be
bypassed, and the false negative-rate drops to 4%. In terms of itera-
tions, the modified convergence criterion saves 2831 of a total of 44355
iterations, or 6.4%.
In this case, the method does not produce any false positives, but in
theory, they can occur if a first iteration is totally unrepresentative of
the final result of the power flow computation. In practical problems,
this should be an extreme exception.
The choice of Ubreak depends again on the exact problem and the will-
ingness to trade precision for speed, but a value like Ubreak = 0.99 Uslack

is a conservative starting point.
In summary, the concept of weak load detection has its limits and must
be rooted in a solid understanding of the goals and the scope of the
simulation. A weak load detection can considerably accelerate the com-
putation, but statistics like mean values of voltages and line currents
might be skewed, and probabilistic interpretations of the results could be
far off, as some of the percentiles are changed. There are many practical
applications where this is not a problem, but it should be always kept
in mind that the solutions of some individual scenarios might not be

117

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

technically correct.

5.5 Parallelization

Ever since CPUs have featured multiple cores, parallelization has been
a straight-forward computational optimization strategy. Consumer-
grade CPUs today (2020) commonly have between 4 and 16 cores which
promises a straightforward way to speed up the computation by a factor
that is equal to the number of cores. If even more performance is re-
quired, a parallelized power flow computation could also be distributed
onto multiple machines. Leveraging a cloud provider, the performance
therefore could, in theory, scale to all reasonable needs. That way, any
size of problem can be solved in almost any time by renting appropriate
server capacity.
As with many practical problems, power flow computations can be par-
allelized along different axes, i.e. the parallelization can be applied to
different sections of code [19].
On the one end of the spectrum, the parallelized section can be very
small, inside the BLAS or LAPACK routines, and therefore affect a
single matrix multiplication or solution of a linear system. This requires
the least customization (in most cases just a configuration setting), but
it also offers the least performance increase, because the parallel pro-
cesses need to be forked and joined frequently.
If the computation task involves more than one load scenario, the
computations can also be parallelized by distributing a fraction of the
number of load scenarios onto each process. In that case, each process
executes a number of complete power flow computations, and the results
are joined only after the whole set has been completed. This requires an
explicit separation of the set of load scenarios, but the less frequent forks
and joins improve performance. Results for the performance increase
using this parallelization strategy are shown below.
Finally, if the practical problem is more complex than a simple com-
putation of voltages, the generation of the data and the evaluation of
the results can also be included in the function that is then distributed
onto multiple processes. This is especially promising if the evaluation
step reduces the raw voltage data significantly in size, e.g. by per-
forming statistical analyses. Section 6.2 shows an example where this

118

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

third parallelization option yields a considerable increase in performance.

Figure 5.12: Different axes of parallelization for power flow computations

In general, this third option should be chosen wherever possible, but the
second approach (parallelization over multiple sets of load scenarios) can
be implemented without specific knowledge about the practical problem
and can therefore always be an option.
However, not every power flow solution method is equally parallelizable.
The speedup factor achievable by a parallel solution is limited by the
memory access properties of the algorithm. In modern CPUs, the L1
and L2 caches are usually repeated in every core, but the L3 cache is
shared between all cores. Access to the L3 cache is therefore always se-
rial, and algorithms that require frequent access to the L3 usually profit
less from parallelization. In any case, the distribution of the functions
and the accompanying data onto the different cores as well as the data
aggregation and merging at the end are a constant overhead. If the
problem is too small, this overhead might not be recoverable by a faster
power flow solution.
Also, as mentioned above, certain individual BLAS and LAPACK rou-
tines are already parallelized in some implementations. Any additional
parallelization on top can also result in a net loss of performance.
All these additional conditions lead to different properties of the algo-
rithms with respect to performance gains from parallelization.
The following performance measurements were made with an Intel 7260U
CPU, which has 2 cores and 4 threads, a base clock frequency of 2.2 GHz,
and a max. clock speed of 3.4 GHz. All parallel computations were per-
formed with 4 processes, so the theoretically best result is a factor of
0.25 compared to single-threaded execution. In practice, the simulta-

119

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

neous multiprocessing capabilities do not usually lead to a significant
speedup, if the program is sufficiently optimized.

YBUS Fixed-Point Methods
As discussed in section 4.5, the YBUS fixed point methods are slowly
converging algorithms from a mathematical point of view, but are very
well adapted to modern CPUs. With the hardware used (see 2.4), they
are not held back by access to memory or caches, and can leverage the
full computational power of the CPU. This indicates that they might
also strongly benefit from parallelization.
However, these improvements can not be realized for every size of power
flow problem. Smaller grids and a lower number of individual cases
to compute do not profit as much and can even take a longer time to
compute due to the constant overhead. Figure 5.13 shows a heatmap
of the runtime improvements for different combinations of grid size and
number of loads in a single feeder low voltage grid for the YBUS Jacobi
method, using the parallelization strategy 2, as defined above. The
YBUS Gauss-Seidel method shows the same characteristics.

Figure 5.13: Heatmap of performance improvements by parallelizing the YBUS
Jacobi method for different grid sizes and number of loads. Average of 10 runs.

In the heatmap, the orange and red areas represent combinations of grid
and problem size where an explicit parallelization is actually harmful.
For example, a trivially small problem with a grid of 10 nodes and 20
load scenarios is solved by the unparallelized YBUS Jacobi method in

120

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

0.6 ms, while a YBUS Jacobi method parallelized to 4 threads solves it
in 5 ms, a slow-down by a runtime factor of 8.3. On the other hand, a
bigger power flow problem with 80 nodes and 1000 load scenarios is sped
up from 4.33 s to 1.76 s, a runtime factor of 0.4.
The results show that problems with more than 200 loads and with grids
with more than 50 nodes can profit from parallelization.

YBUS Newton-Raphson Method

A similar heatmap is plotted for the YBUS Newton-Raphson method in
Figure 5.14. There are two additional problems with a parallelization
of the YBUS Newton-Raphson method: First, the solution of the system
of linear equations, which is the main numerical function inside of the
YBUS Newton-Raphson method, is already parallelized in many high-
performance libraries like LAPACK and the MKL. Secondly, as shown
in section 4.5, the method is not only bounded by the CPU itself, but
also by the L3 cache. Because the L3 cache is shared between all the
cores, an execution on multiple cores results in a longer runtime for many
problems. Only problems with many nodes and a high amount of loads
can therefore profit from parallelization.

Figure 5.14: Heatmap of performance improvements by parallelizing the YBUS
Newton-Raphson method for different grid sizes and number of loads. Average
of 10 runs.

121

CHAPTER 5. COMPUTATIONAL OPTIMIZATION APPROACHES

ZBUS Jacobi Method

The ZBUS Jacobi method is even harder to parallelize effectively, as seen
in Figure 5.15. Only when a power flow computation task reaches a
very big grid size and/or number of load scenarios, it is worthwhile to
parallelize it. For smaller problems, the ZBUS Jacobi method is often so
fast that any overhead can not be recovered. In that sense, the problems
with parallelization of the ZBUS Jacobi are actually a consequence of its
strong performance.

Figure 5.15: Heatmap of performance improvements by parallelizing the ZBUS
Jacobi method for different grid sizes and number of loads. Average of 10 runs.

122

Chapter 6

Power Flow Case Studies

In order to show the usefulness of the presented algorithms and opti-
mization approaches, three benchmark problems are presented in this
chapter. They are selected to not just be generic benchmark problems,
but practical problems involving a realistic set of input data and an eval-
uation of the results.
All considered problems contain a large number of individual power flow
computations. Those are the problems where a faster algorithm, a bet-
ter implementation, or an effective optimization can make a significant
difference.
In addition to the benchmark results of the selected power flow meth-
ods and optimization approaches, the runtime of the open source power
flow library PYPOWER is also given. PYPOWER contains an imple-
mentation of the YBUS Newton-Raphson method, but its internal repre-
sentation of slack nodes and its separated functions are detrimental to
its performance compared to an implementation following the algorithm
outlined in section 4.2.

6.1 Time-Series Power Flow Computations
in the European LV Feeder

The European LV Feeder is a test grid published by the IEEE PES
Distribution Systems Analysis Subcommittee [50]. The data stems from
a real grid in Manchester, UK and aims to represent an average European
residential low-voltage grid [97]. It models 55 households in a 416 V

123

CHAPTER 6. POWER FLOW CASE STUDIES

system. The grid is supplied by an overlaying 11 kV grid via one 800
kVA transformer. A time series with 1440 power values is provided for
every load, which represents one day in one-minute resolution. The grid
model contains 906 nodes and 905 lines, many of which were introduced
to mimic the exact geographic route of the cables.
Figure 6.1 shows the single-line diagram. The red dots are nodes with
a load, the gray dots all represent nodes which do not supply any load.
Some of these are required to model a cable junction, but the majority
has no such purpose and exists solely to model the geographic path of
the lines. This grid model contains a lot of redundant information and
is almost tailor-made for a grid reduction algorithm.

Figure 6.1: Original grid topology of the European LV Feeder test grid, com-
prised of 906 nodes and 905 lines

The runtimes of the computation of all 1440 load scenarios in sequence
for a selection of methods are shown in table 6.1. The relative runtime
as compared to the runtime of PYPOWER is also shown. Without any
reduction, the size and topology of the grid limits the choice of algorithm
to YBUS Newton-Raphson or ZBUS Jacobi.

124

CHAPTER 6. POWER FLOW CASE STUDIES

Table 6.1: Runtimes and relative runtimes as compared to PYPOWER for
European LV Feeder grid, single-phase case, no optimizations

PYPOWER no customizations 50m 10s 100 %
YBUS Jacobi no optimizations 2h 59m 356 %
YBUS Gauss-Seidel no optimizations 3h 10m 379 %
YBUS Newton no optimizations 12m 1s 24.0 %
ZBUS Jacobi no optimizations 4.8s 0.16 %

The nature of this distribution grid, namely a comparatively large node
count, but not so large that the admittance matrix has trouble fitting
into main memory and no PV nodes combined with a time-series com-
putation without any changes in the grid, plays to the strengths of the
ZBUS Jacobi method, which is around 150 times faster than the YBUS
Newton-Raphson method in this case.

Sparse Matrix Formulations

The high number of nodes (906) suggests that the sparse-matrix-versions
of the methods may be faster, and they are indeed both around 30%
faster, as shown in table 6.2.

Table 6.2: Runtimes and relative runtimes as compared to PYPOWER for
European LV Feeder grid, single-phase case, sparse-matrix versions

YBUS Newton sparse-matrix version (CSR) 8m 48 s 17.6 %
ZBUS Jacobi sparse-matrix version (CSR) 3.7 s 0.12 %

Lossless Grid Reduction

As mentioned, the node count can be massively reduced with just lossless
grid reduction techniques. After removing the loose ends and deleting
intermediate nodes using the algorithms in section 5.3.1, 110 nodes and
109 lines remain in the grid, as shown in Figure 6.2.
As expected, power flow computations in this grid are much faster, as
recorded in table 6.3.

125

CHAPTER 6. POWER FLOW CASE STUDIES

Figure 6.2: Losslessly reduced grid topology of the European LV Feeder test
grid, comprising 110 nodes and 109 lines. Two seemingly superflous nodes can
be seen in the upper half of the grid, but they actually connect two load nodes
with identical coordinates.

Table 6.3: Runtimes and relative runtimes as compared to PYPOWER for
European LV Feeder grid, single-phase case, after grid reduction.

YBUS Newton lossless grid reduction 750 ms 0.025 %
ZBUS Jacobi lossless grid reduction 80 ms 0.0027 %

Compared to the initial runtimes in table 6.1, these timings represent a
speedup factor of 60 for the ZBUS Jacobi method and 961 for the YBUS
Newton method. In this smaller grid, the sparse-matrix-versions of the
methods are actually detrimental to performance, as shown in table 6.4.

Table 6.4: Runtimes and relative runtimes as compared to PYPOWER for
European LV Feeder grid, single-phase case, sparse-matrix versions, after grid
reduction

YBUS Newton lossless grid reduction &
sparse-matrix-version (CSR)

1.9 s 0.063 %

ZBUS Jacobi lossless grid reduction &
sparse-matrix-version (CSR)

127 ms 0.0042 %

126

CHAPTER 6. POWER FLOW CASE STUDIES

Lossy Grid Reduction

If an approximate solution is acceptable, a lossy grid reduction can
reduce the computation times even further. Figure 6.3 shows the grid
model after being reduced to 50 nodes, and Figure 6.4 shows the voltage
error introduced by that reduction. The first plot shows the minimal
voltage in the non-reduced (orange) and the reduced (blue) grid model
for every timestep, and the second plot shows the difference in the min-
imal voltages, where a positive difference means a higher voltage of the
reduced grid. The runtimes of the YBUS Newton method and the ZBUS
Jacobi method are shown in table 6.5.

Figure 6.3: Grid model of the European LV Feeder reduced to 50 nodes

Table 6.5: Runtimes and relative runtimes as compared to PYPOWER for
1440 load cases in the European LV Feeder grid, single-phase case, after lossless
grid reduction and lossy reduction to 50 nodes

YBUS Newton lossless grid reduction
+ lossy grid reduction to 50
nodes

637 ms 0.021 %

ZBUS Jacobi lossless grid reduction
+ lossy grid reduction to 50
nodes

21 ms 0.0007 %

The reduction to 50 nodes leads to a speedup factor of 3 in the case
of YBUS Newton, and 4 in the case of ZBUS Jacobi. The deviations

127

CHAPTER 6. POWER FLOW CASE STUDIES

0:00 6:00 12:00 18:00 24:00

Time of day / hh:mm

248

250

252
M
in
.
a
b
s.

V
o
lt
a
g
e
/
V

Reduced Grid

Original Grid

0:00 6:00 12:00 18:00 24:00

Time of day / hh:mm

0.00

0.02

0.04

0.06

D
iff
er
en

ce
/
V

Figure 6.4: Minimal absolute voltages of non-reduced grid model and grid
model reduced to 50 nodes and difference between the minimal voltages below

from the non-reduced case (see the lower plot in figure 6.4) max out
at around 75 mV (0.0003 pu). This is the maximum magnitude of the
overestimation of the voltage drop caused by the lossy grid reduction.

Figure 6.5 shows the grid model of the European LV Feeder after being
reduced to just 5 nodes.

128

CHAPTER 6. POWER FLOW CASE STUDIES

Figure 6.5: Grid model of the European LV Feeder reduced to 5 nodes

Figure 6.6: Minimal absolute voltages of non-reduced grid model and grid
model reduced to 5 nodes

129

CHAPTER 6. POWER FLOW CASE STUDIES

Table 6.6: Runtimes and relative runtimes as compared to PYPOWER for
1440 load cases in the European LV Feeder grid, single-phase case, after lossless
grid reduction and lossy reduction to 5 nodes

YBUS Newton lossless grid reduction
+ lossy grid reduction to 5
nodes

18 ms 0.0006 %

ZBUS Jacobi lossless grid reduction
+ lossy grid reduction to 5
nodes

2.6 ms 0.000086 %

Although the shape of the grid barely resembles the original grid, the
deviations in minimal absolute voltages (Figure 6.6) would be accept-
able in many contexts. The difference between the non-reduced and
the reduced grid model never exceeds 0.3 V (0.0013 pu). The runtime
is improved by factors of 35 and 6 for the YBUS Newton and the ZBUS
Jacobi methods, respectively.
To summarize, the runtime for a power flow computation in this grid
could be improved from 12 minutes for the YBUS Newton-Raphson
method without any optimizations to 80 ms by using the ZBUS Jacobi
method and a lossless grid reduction, without any loss in precision (a
speedup factor of 9000). By allowing a certain precision loss by using
a lossy grid reduction, the runtime could even be reduced to 2.6 ms (a
speedup factor of more than 250,000).

130

CHAPTER 6. POWER FLOW CASE STUDIES

6.2 Monte Carlo Simulation of EV Penetra-
tion in a Low-Voltage Grid

A Monte Carlo simulation is a method which aims to produce statistics
about a complex process or function by evaluating that function for a
large set of stochastically distributed input data. In power grid research,
Monte Carlo simulations are often used to evaluate scenarios regarding
the integration of volatile generation [30] and electric vehicles [89] into
distribution grids. These kinds of analyses entail a large number of un-
certain, stochastic variables like weather conditions and human behavior
that need to be evaluated with all their permutations, or at last as many
as possible. To reach statistical significance, these simulations routinely
contain thousands or millions of individual power flow computations.
As an example problem developed for this thesis, consider the low volt-
age grid in Figure 6.7. The grid is radial and contains 53 nodes, 40
households, and 21 PV plants. It is modeled after a rural, German low
voltage grid with high PV penetration.

Figure 6.7: Example low voltage grid with high PV penetration

A typical investigation that might lead to a Monte Carlo simulation is the
evaluation of the hosting capacity for electric vehicles in this grid. If (or
rather, when) the inhabitants start buying electric vehicles and charge
them at their homes, the grid operator should investigate what number
of electric vehicles and what charging power can be supported by the ex-
isting grid infrastructure and what leads to voltage band violations. To
illustrate the computational complexity of such a simulation and eval-

131

CHAPTER 6. POWER FLOW CASE STUDIES

uate the runtimes and optimization potential, this section presents a
model simulation with simplified data setup and result evaluation, but
a full-scale power flow simulation.
The impact of the electric vehicles on the actual load on the grid de-
pends on many parameters, like the charging power, the time at which
the charging starts and the distances driven. In order to roughly simu-
late these influencing factors, the electric vehicle charging processes are
modeled as outlined in Figure 6.8. In this model, the charging power is
an input variable, the consumption of the EVs is assumed to be uniform
with 17 kWh/100 km, and the km driven before the charging process as
well as the start time of the charging process are the results of simple
stochastic functions. The distance driven is randomly selected according
to a Gamma distribution with k = 18 and θ = 2 to model the distri-
bution shown in Figure 10 of [100], and the start time of the charging
process is selected from a normal distribution with µ = 18 and σ = 1.5,
expressed in hours of the day, as in [24]. µ was shifted to 18 to better
represent behaviour of consumers in a rural, German area as opposed
to a urban American area. The charging power itself is assumed to be
constant over the duration of the charging process, and does not level
off towards the end, as it does in reality. The household and PV loads
are given as a fixed time series of one year.

Figure 6.8: Probabilistic process to generate the load curves of households
with electric vehicles

An important factor for the validity of the simulation results is the time
resolution. Many simulations involving households and PV plants work
with one-hour, 15-minute, or 10-minute resolutions. In the case of elec-
tric vehicles with high charging powers however, this might not be fine-
grained enough, as a charging process might only take a few minutes,
and multiple charging processes might overlap in the simulation when

132

CHAPTER 6. POWER FLOW CASE STUDIES

they would not in reality. The combination of fine-grained time resolu-
tion (one minute in this case, for a total of 1440 simulations for one day)
and a high number of days that must be simulated to achieve a statisti-
cally significant result leads to a large number of individual power flow
simulations. For this example, the combination and permutation of

1. EV counts of 10, 20, 30, 40, 50, 60, and 70 (7 variants),

2. EV charging powers of 11 kW, 22 kW, 43 kW, 80 kW, and 100 kW
(5 variants),

3. a simulation duration of 1 year for each electric vehicle distribution
(meaning 365 days),

4. 1440 simulations per day for a one-minute resolution, and

5. repeated 10 times to account for different vehicle distributions

leads to a problem with 181, 440, 000 individual power flow simulations.
The result of this simulation is an equal number of voltage profiles. The
evaluation and interpretation of these profiles is a problem in itself. As a
simple first evaluation, Figure 6.9 shows the resulting number of minutes
with voltage band violations of more than 10% (i.e. lower than 360 V at
at least one node) for each combination of number and charging power of
electric vehicles. Notably, this plot does not show how bad a voltage band
violation is or how much the lines and the transformer are loaded. This
is obviously a very limited evaluation, but the power flow computation
itself is equivalent to a more sophisticated problem setup and evaluation.
The important metric is the computation time required to compute the
voltage profiles as an intermediate result for all other analyses.
The power flow library PYPOWER takes around 9 hours to finish the
computation for only one of the 35 combinations of vehicle number and
charging power, and therefore would take around 13 days to complete
the simulation. The runtimes of the YBUS Newton-Raphson and ZBUS
Jacobi methods are shown in table 6.7. The ZBUS Jacobi method is
clearly best suited for this task and is, without any optimizations, 60
times faster than an already quite optimized YBUS Newton-Raphson
method.

133

CHAPTER 6. POWER FLOW CASE STUDIES

Figure 6.9: Number of minutes with voltage band violations for different num-
bers and charging powers of electric vehicles

Table 6.7: Runtimes and relative runtime as compared to PYPOWER for
181,440,000 power flow simulations without any optimizations

PYPOWER no optimizations ≈ 13d 100 %
YBUS Newton no optimizations ≈ 33h 10.6 %
ZBUS Jacobi no optimizations 32m 06s 0.17 %

Parallelization

Unlike the comparatively small problem in the previous section 6.1, this
problem can benefit from a parallelized execution. As shown in section
5.5, there are multiple ways to set up the parallelization. One possibility
is a parallelization analog to section 5.5, where only the power flow com-
putations themselves are distributed to multiple processes. This leaves
the setup step (computation of the load profiles through the statistical
processes) and result evaluation step (in this case the evaluation of volt-
age band violations) untouched. In order to parallelize these tasks as
well, the entire computation including setup, power flow, and evalua-
tion needs to be encapsulated in a single function which can be executed
in a separate process. Figure 6.10 visualizes the three parallelization
strategies when four processes can be executed in parallel.
In practice, the latter strategy leads to the better overall execution time
and cuts the runtime down to below 20 minutes on the 2-core, 4-thread
Intel 7260U CPU, as shown in table 6.8.

134

CHAPTER 6. POWER FLOW CASE STUDIES

Figure 6.10: 3 different parallelization strategies for the specific task in this
section, when four processes can be executed in parallel

Table 6.8: Runtimes and relative runtimes as compared to PYPOWER for
181,440,000 power flow simulations with parallelization

ZBUS Jacobi Parallelization in the power flow
function (strategy b)

25m 48s 0.14 %

ZBUS Jacobi Parallelization of the entire eval-
uation (strategy c)

19m 41s 0.11 %

The simpler parallelization leads to a performance gain of around 20%,
the more elaborate parallelization of the entire function leads to a gain
of around 40 %.
Special care has to be taken to ensure a correct initialization of the pro-
cesses, especially if they contain a pseudo-random generator. Without
explicit seeding, the random state of the processes might be identical, so
that all ’random’ loads profiles end up the same.

Weak Load Detection

Since the simulation of the loads includes timesteps from all times of day,
there are a lot of points in time where the voltage is in very safe bounds

135

CHAPTER 6. POWER FLOW CASE STUDIES

and far from a voltage band violation. This makes this kind of simulation
a prime candidate for weak load detection (see section 5.4). The goal of
this technique is to find a minimal operation that can determine whether
a set of loads will yield voltages that are easily within safe bounds.
In this case, the voltage U can be assumed to be within safe bounds
when the absolute power of the most loaded node is under a certain
bound Scutoff. Mathematically, this can expressed as

‖S‖max < Scutoff → U = U0, (6.1)

where Scutoff ∈ R is a chosen value which ensures that the assumption
U = U0 can be applied to the weakly loaded timesteps in a determinis-
tic way which does not influence the statistical relevant parts of the raw
results. By performing a trial run with a series of power flow compu-
tations, where the grid is progressively, but uniformly loaded with the
same load at every node, a safe threshold Scutoff can be found. In this
low-voltage grid example, the influence of reactive power on this esti-
mation is ignored, but in high-voltage grids, such an trial run needs to
include an evaluation of the maximum reactive power as well. Figure
6.11 shows the results for this trial run for the example grid.

340 360 380 400 420 440 460

Voltage with max. deviation from slack / V

−10000

−5000

0

5000

10000

L
o
a
d
a
p
p
li
ed

a
t
ev
er
y
n
o
d
e
/
W

Figure 6.11: Result of a trial run for weak load detection, where the grid is
progressively loaded to determine a safe Scutoff

Every marker in Figure 6.11 represents one power flow computation
and is located according to the load that applied to every node and the
resulting voltage with the greatest deviation from the slack voltage.
The plot shows that an unsafe voltage below 360 V (0.9 pu) is reached

136

CHAPTER 6. POWER FLOW CASE STUDIES

when a load of around 6 kW is applied to all nodes. Therefore, any set
of loads where the absolute maximal load does not exceed 6 kW will not
lead to a voltage below 360 V.
Critically, this criterion is extremely fast to check during the computa-
tion. A more complex criterion might be more effective, but an increased
computation time quickly leads to a situation where a complete power
flow would actually be faster.
The cirterion is then used to prune the loads before the power flow
computations even start. In this case, around 45% of all load profiles
can be immediately identified as safe and do not require an explicit
power flow computation. The result is identical to Figure 6.9.

Table 6.9: Runtimes and relative runtimes as compared to PYPOWER for
181,440,000 power flow simulations with weak load detection and paralleliza-
tion

PF method Optimization Runtime
ZBUS Jacobi Weak Load Detection with

‖S‖max < 6 kW
27m 24s 0.15 %

ZBUS Jacobi Parallelization (strategy c) &
Weak Load Detection with
‖S‖max < 6 kW

14m 39s 0.078 %

The application of weak load detection yields a moderate performance
increase, as shown in table 6.9. The weak-load detection can easily
be incorporated into the parallelized function, and the application of
both optimization techniques increases the performance by around 55%
compared to the non-optimized ZBUS Jacobi method.
The example shows the optimization potential for a type of a large-scale
simulation that is often required for statistical evaluations related to
volatile and human behavior. In this example, with the right power flow
method, an efficient implementation and some optimization techniques,
the runtime can be cut from multiple hours or even days to less than 15
minutes. In practice, this especially helps with development iterations,
which might require multiple complete simulations in order to dial in
statistical variables.

137

CHAPTER 6. POWER FLOW CASE STUDIES

6.3 n-2 Contingency Analysis in a High
Voltage Grid

The concept of n-1 contingency analysis is widely used in electric grid
planning and operations. The n-1 criterion states that an electric grid
should continue to function within safe operating bounds if any one of
the system components fails. Consequently, the n-2 criterion demands a
stable operation in the case of two simultaneous failures. The n-1 crite-
rion is routinely applied to transmission grids and high voltage distribu-
tion grids. The n-2 criterion is technically evaluated when the operation
during a planned outage is analyzed, but it is rarely applied in normal
operation for two unplanned outages due to the computational effort.
In this section, a basic n-2 contingency analysis is conducted for the lines
of an example high voltage grid with 110 nodes. The grid is modeled
after a German high-voltage distribution grid and is pictured in Figure
6.12.

Figure 6.12: Topology of the example high voltage grid for the computation
of the n-2 contingency with 110 nodes and 125 lines

The grid contains 11 slack nodes, which model the connections to the
overlaying transmission grid. These slack nodes have different voltages

138

CHAPTER 6. POWER FLOW CASE STUDIES

due to different tap changer settings, and the power flow computations
therefore require the use of the adapted YBUS formulations and algo-
rithms presented in sections 3.3 and 4.6.2.
Although some of the high-voltage lines are realized as parallel systems,
all lines are modeled as single impedances and as fully impacted by an
outage.
The computation considers only one load scenario. There are l = 125
lines, so the n-2 contingency analysis leads to (l−1)2/2+ l = 7813 differ-
ent cases due to the (i, j)-(j, i)-symmetry of line outages. Crucially, each
of these cases involves a slightly different grid topology. This means
that the YBUS matrix needs to be modified for each case.
As a simple final result, Figure 6.13 shows the maximum current in the
grid for each of the line outage combinations. The evaluation shows
that there are three critical outage combinations (Line 50+81, 50+82,
and 50+30). During a real, comprehensive contingency analysis there
would likely be a more in-depth evaluation of the results taking into
account the current limits of the individual lines, but that is usually not
the performance-critical part.

0 25 50 75 100 125

First Line Outage

0

25

50

75

100

125

S
ec
o
n
d
L
in
e
O
u
ta
g
e

0

200

400

600

800

1000

1200

M
a
x
.
L
in
e
C
u
rr
en

t
/
A

Figure 6.13: Heatmap of the maximal currents in grid for all n-2 line outages.
Each outage case is plotted twice due to the symmetry around the diagonal

The runtimes of the power flow methods are presented in table 6.10.

139

CHAPTER 6. POWER FLOW CASE STUDIES

Table 6.10: Runtimes and relative runtimes as compared to PYPOWER for
the n-2 contingency analysis (7813 cases)

PYPOWER no optimization 8m 02s 100 %
YBUS Jacobi no optimization 27m 42s 345 %
YBUS Gauss-Seidel Acceleration factor 1.2 30m 20s 378 %
YBUS Newton no optimization 2m 21s 29.3 %
ZBUS Jacobi no optimization 5m 16s 65.6 %

The YBUS Jacobi method is the fastest YBUS fixed-point method, even
if the optimal acceleration factor for the YBUS Gauss-Seidel method
(around α = 1.2 in this case) is found and set, but in the end, the
YBUS fixed-point methods are still not competitive. The YBUS Newton-
Raphson method is faster than the ZBUS Jacobi method in this specific
scenario. Because the admittance matrix Y changes between every
individual power flow calculation, the cost of the explicit matrix in-
version Z = Y−1 required in the ZBUS Jacobi method incurs in every
computation. This is an extreme scenario, and one of the few which
does not favor the ZBUS Jacobi method for overall computation time. If
the computation includes more load scenarios or even an extensive time
series, the ZBUS Jacobi method is back to being the fastest.
PYPOWER does not support multiple slack nodes, so all but one slack
node are modeled as PV nodes instead. Its runtime is 8m 02s, which is
slightly more competitive compared to the other scenarios.
Among the optimization approaches, the weak load detection is not
applicable, because there is only one load scenario. A grid reduction
can also not be applicable, since there are no superfluous nodes in this
complex topology. A sparse formulation also yields no performance
increase. The only applicable optimization technique is parallelization.

Parallelization

In this contingency analysis, each outage simulation includes only one set
of loads, and so only one power flow simulation is done for every unique
grid. In order to gain any performance advantage from parallelization,
the entire function of one outage simulation (generate grid with two
lines removed, execute the power flow, evaluate the currents) has to be
parallelized. This yields a 25 % speedup, as shown in table 6.11. The
improvement is limited by the significant overhead of the parallelization,

140

CHAPTER 6. POWER FLOW CASE STUDIES

including the separation of the data and copy operations to and from
the different cores.

Table 6.11: Runtime and relative runtime as compared to PYPOWER for the
n-2 contingency analysis (7813 cases) using parallelization

YBUS Newton Parallelization to 2 cores 1m 45s 21.8 %

To summarize, in simulations where the grid topology or the impedances
and therefore the admittance matrix Y frequently changes, the YBUS
Newton-Raphson method can be faster than the ZBUS Jacobi method,
because of the matrix inversion overhead for the latter. This might
however be different if each outage case involves a time-series simulation.
In that case, this task resembles the case in the previous section 6.2.

141

CHAPTER 6. POWER FLOW CASE STUDIES

142

Chapter 7

Summary

This thesis has given an overview over the mathematical, numerical,
and computational nature of the power flow problem, including the rea-
soning behind the physical and mathematical model, available solution
methods, and their optimal formulation from a computing point of view.
The examined solution methods were the widely applied YBUS Newton-
Raphson, YBUS Gauss-Seidel and Backward-Forward Sweep methods
along with the less popular YBUS Jacobi, YBUS Relaxation, and ZBUS
Jacobi methods. All methods were derived algorithmically, and the
most computationally performant implementations were given. After a
generic benchmark, the methods were applied to 3 example problems
modeled after modern distribution grid planning approaches.
The key findings were as follows:

1. An implementation of the solution methods based on the
computational properties of modern CPUs can unlock sig-
nificant performance gains. Modern CPUs employ a range of
increasingly complicated techniques to bridge the growing gap in
speed between memory and execution units, like caches, pipelining,
and branch-prediction. Using these techniques to its advantage,
the YBUS Newton-Raphson method devised in this thesis is 3 - 10
times faster than the open-source solver PYPOWER, while being
algorithmically identical.

2. Most power flow methods belong to three distinct classes,
YBUS fixed-point methods, YBUS Newton-Raphson methods, and

143

CHAPTER 7. SUMMARY

the ZBUS Jacobi method. Among the YBUS fixed-point meth-
ods, the YBUS Jacobi method is more performant than the more
popular YBUS Gauss-Seidel method. The YBUS Newton-Raphson
method is currently the most popular method and can be effec-
tively combined with model simplifications to form ’decoupled’
methods, which are effective for transmission grids. The ZBUS
Jacobi method is an old and often neglected method in its original
form, but Backward-Forward-Sweep methods, which are a special
case of the YBUS Jacobi method, are popular for use with single-
feeder distribution grids. Many other seemingly methods can be
traced back to one of those classes.

3. Popular acceleration approaches like sparse matrices and
parallelization can actually be detrimental to perfor-
mance. This again speaks to the raw performance of memory-
contiguous numerical computations. Sparse matrices can e.g.
severely impede cache performance, and parallelization can lead to
an unrecoverable overhead. The smaller the grid and the compu-
tation problem, the more probable it is that an unmodified power
flow method is actually fastest. In sufficiently large-scale problems
however, these and other acceleration approaches like weak-load
detection and grid reduction can have a great impact. In the pre-
sented examples, these techniques could speed up the computation
by up to a factor of 1000 without any loss in precision.

4. For most practical distribution grid planning problems,
the ZBUS Jacobi method is by far the fastest power flow
method. Algorithmically, it is on par with the currently dominat-
ing YBUS Newton-Raphson method, but computationally is much
more efficient, as it employs fewer variables and simpler operations,
leading to better memory and cache utilization as well as pipeline
behaviour, which are critical to performance on modern CPUs. In
the presented large-scale example problems, the computationally
optimized ZBUS Jacobi method is 60 to 150 times faster. The
aforementioned YBUS fixed-point methods are not competitive at
all. The only instances where a YBUS Newton-Raphson method
might be faster are scenarios with changes in the grid impedances
after every computation, as shown with the purpose-built example
in section 6.3. One obstacle for the widespread adoption of the
ZBUS Jacobi method is the lacking experience with more complex

144

CHAPTER 7. SUMMARY

grid elements and component models. To that end, the thesis lists
an existing, but seemingly unused method to incorporate gener-
ator nodes and contributes an extension to the method for grids
with multiple slack nodes.

In summary, the results show that there is a lot of potential in computa-
tionally optimized power flow algorithms and customizable optimization
approaches especially for large-scale power flow problems involving many
load scenarios, which are typical for modern distribution grid planning
approaches. With the options laid out above, the runtime can often
be cut down by orders of magnitude, without resorting to probabilistic
methods or major simplifications.

145

CHAPTER 7. SUMMARY

146

Bibliography

[1] Ahmad Abdel-Majeed. “Three-Phase State Estimation for Low-
Voltage Grid”. PhD thesis. Universität Stuttgart, 2016.

[2] V. Ajjarapu and C. Christy. “The continuation power flow: A tool
for steady state voltage stability analysis”. In: IEEE Transactions
on Power Systems 7.1 (1992), pp. 416–423. doi: 10.1109/59.
141737. url: https://ieeexplore.ieee.org/abstract/docum
ent/141737.

[3] R. N. Allan, B. Borkowska, and C. H. Grigg. “Probabilistic anal-
ysis of power flows”. In: Proceedings of the Institution of Electri-
cal Engineers 121.12 (1974), pp. 1551–1556. issn: 00203270. doi:
10.1049/piee.1974.0320. url: http://digital- library.
theiet.org/content/journals/10.1049/piee.1974.0320.

[4] R.N. Allan et al. “Probabilistic power-flow techniques extended
and applied to operational decision making”. In: Proceedings of the
Institution of Electrical Engineers 123.12 (1976), pp. 1317–1324.
issn: 00203270. doi: 10.1049/piee.1976.0264. url: http:
/ / digital - library . theiet . org / content / journals / 10 .
1049/piee.1976.0264.

[5] AMD. AMD Optimizing CPU Libraries. Oct. 22, 2021. url: htt
ps://developer.amd.com/amd-aocl/.

[6] Richard V. Andre. Programming the IBM 650 Magnetic Drum
Computer and Data-Processing Machine. 1958. url: http : / /
bitsavers.informatik.uni-stuttgart.de/pdf/ibm/650/An
dree_Programming_the_IBM_650_Magnetic_Drum_Computer_
and_Data-Processing_Machine_1958.pdf.

147

https://doi.org/10.1109/59.141737
https://doi.org/10.1109/59.141737
https://ieeexplore.ieee.org/abstract/document/141737
https://ieeexplore.ieee.org/abstract/document/141737
https://doi.org/10.1049/piee.1974.0320
http://digital-library.theiet.org/content/journals/10.1049/piee.1974.0320
http://digital-library.theiet.org/content/journals/10.1049/piee.1974.0320
https://doi.org/10.1049/piee.1976.0264
http://digital-library.theiet.org/content/journals/10.1049/piee.1976.0264
http://digital-library.theiet.org/content/journals/10.1049/piee.1976.0264
http://digital-library.theiet.org/content/journals/10.1049/piee.1976.0264
https://developer.amd.com/amd-aocl/
https://developer.amd.com/amd-aocl/
http://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/650/Andree_Programming_the_IBM_650_Magnetic_Drum_Computer_and_Data-Processing_Machine_1958.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/650/Andree_Programming_the_IBM_650_Magnetic_Drum_Computer_and_Data-Processing_Machine_1958.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/650/Andree_Programming_the_IBM_650_Magnetic_Drum_Computer_and_Data-Processing_Machine_1958.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/650/Andree_Programming_the_IBM_650_Magnetic_Drum_Computer_and_Data-Processing_Machine_1958.pdf

BIBLIOGRAPHY

[7] K. Balamurugan and Dipti Srinivasan. “Review of power flow
studies on distribution network with distributed generation”. In:
2011 IEEE Ninth International Conference on Power Electronics
and Drive Systems. 2011, pp. 411–417. doi: 10.1109/PEDS.2011.
6147281.

[8] Stefan G. Berg. Cache Prefetching. Tech. rep. 2002. url: http://
embedded.cs.uni-sb.de/literature/CachePrefetching.pdf.

[9] Susan Blackford and Jack Dongorra. LAPACK Working Note
41: Installation Guide for LAPACK. Tech. rep. Department of
Computer Science, University of Tennessee, Knoxville, Tennessee,
1999. url: http://www.netlib.org/lapack/lawnspdf/lawn
41.pdf (visited on 09/21/2021).

[10] A. Brameller and J. K. Denmead. “Some improved methods for
digital network analysis”. In: Proceedings of the IEE - Part A:
Power Engineering 109.43 (1962), pp. 109–116. issn: 03698882.
doi: 10.1049/pi-a.1962.0078. url: http://digital-librar
y.theiet.org/content/journals/10.1049/pi-a.1962.0078.

[11] L.M.C. Braz, C.A. Castro, and C.A.F. Murati. “A critical evalua-
tion of step size optimization based load flow methods”. In: IEEE
Transactions on Power Systems 15.1 (2000), pp. 202–207. doi:
10.1109/59.852122.

[12] H. E. Brown et al. “Power Flow Solution by Impedance Matrix
Iterative Method”. In: IEEE Transactions on Power Apparatus
and Systems 82.65 (1963), pp. 1–10. issn: 00189510. doi: 10.
1109/TPAS.1963.291392.

[13] Homer E. Brown et al. “Z-Matrix Algorithms in Load-Flow Pro-
grams”. In: IEEE Transactions on Power Apparatus and Systems
PAS-87.3 (1967), pp. 807–814. issn: 00189510. doi: 10.1109/
TPAS.1968.292196.

[14] Rodney J. Brown and William F. Tinney. “Digital Solutions for
Large Power Networks”. In: Transactions of the American In-
stitute of Electrical Engineers. Part III: Power Apparatus and
Systems 76.June (Apr. 1957), pp. 347–351. issn: 00972460. doi:
10.1109/AIEEPAS.1957.4499563. url: http://ieeexplore.
ieee.org/document/4499563/.

[15] Charles Byrne. Applied Iterative Methods. 2007. doi: 10.1201/
b10651.

148

https://doi.org/10.1109/PEDS.2011.6147281
https://doi.org/10.1109/PEDS.2011.6147281
http://embedded.cs.uni-sb.de/literature/CachePrefetching.pdf
http://embedded.cs.uni-sb.de/literature/CachePrefetching.pdf
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf
https://doi.org/10.1049/pi-a.1962.0078
http://digital-library.theiet.org/content/journals/10.1049/pi-a.1962.0078
http://digital-library.theiet.org/content/journals/10.1049/pi-a.1962.0078
https://doi.org/10.1109/59.852122
https://doi.org/10.1109/TPAS.1963.291392
https://doi.org/10.1109/TPAS.1963.291392
https://doi.org/10.1109/TPAS.1968.292196
https://doi.org/10.1109/TPAS.1968.292196
https://doi.org/10.1109/AIEEPAS.1957.4499563
http://ieeexplore.ieee.org/document/4499563/
http://ieeexplore.ieee.org/document/4499563/
https://doi.org/10.1201/b10651
https://doi.org/10.1201/b10651

BIBLIOGRAPHY

[16] D. P. Chassin, K. Schneider, and C. Gerkensmeyer. “GridLAB-
D: An open-source power systems modeling and simulation en-
vironment”. In: 2008 IEEE/PES Transmission and Distribution
Conference and Exposition. 2008, pp. 1–5. doi: 10.1109/TDC.
2008.4517260.

[17] T.-H. Chen et al. “Distribution system short circuit analysis-A
rigid approach”. In: IEEE Transactions on Power Systems 7.1
(1992), pp. 444–450. doi: 10.1109/59.141741.

[18] Cigré Working Group C4.605. Modelling and Aggregation of Loads
in Flexible Power Networks. Tech. rep. February. CIGRE, 2014,
p. 190. url: https://e- cigre.org/publication/566- mod
elling- and- aggregation- of- loads- in- flexible- power-
networks.

[19] T. Cui et al. “Accelerated AC contingency calculation on com-
modity multi-core SIMD CPUs”. In: 2014 IEEE PES General
Meeting, Conference Exposition. 2014, pp. 1–5. doi: 10.1109/
PESGM.2014.6939078.

[20] J.C. Das. Power System Analysis. Short-Circuit Load Flow and
Harmonics. CRC Press, 2012. isbn: 978-1-4398-2080-3.

[21] Erhan Demirok et al. “Three-Phase Unbalanced Load Flow Tool
for Distribution Networks”. In: Proceedings of the 2nd Interna-
tional Workshop on Integration of Solar Power Systems. 2012.
isbn: 978-3-9813870-6-3. url: http : / / vbn . aau . dk / files /
76360540/SIW12_69.pdf.

[22] Hermann Dommel and William Tinney. “Optimal Power Flow
Solutions”. In: IEEE Transactions on Power Apparatus and Sys-
tems PAS-87.10 (Oct. 1968), pp. 1866–1876. issn: 00189510. doi:
10.1109/TPAS.1968.292150. url: http://ieeexplore.ieee.
org/document/4073461/.

[23] Ulrich Drepper. What every programmer should know about mem-
ory. Tech. rep. Red Hat Inc., 2007, pp. 1–114. url: https://
people.freebsd.org/~lstewart/articles/cpumemory.pdf.

[24] Anamika Dubey et al. “Determining Time-of-Use Schedules for
Electric Vehicle Loads: A Practical Perspective”. In: IEEE Power
and Energy Technology Systems Journal 2.1 (2015), pp. 12–20.
issn: 23327707. doi: 10.1109/jpets.2015.2405069.

149

https://doi.org/10.1109/TDC.2008.4517260
https://doi.org/10.1109/TDC.2008.4517260
https://doi.org/10.1109/59.141741
https://e-cigre.org/publication/566-modelling-and-aggregation-of-loads-in-flexible-power-networks
https://e-cigre.org/publication/566-modelling-and-aggregation-of-loads-in-flexible-power-networks
https://e-cigre.org/publication/566-modelling-and-aggregation-of-loads-in-flexible-power-networks
https://doi.org/10.1109/PESGM.2014.6939078
https://doi.org/10.1109/PESGM.2014.6939078
http://vbn.aau.dk/files/76360540/SIW12_69.pdf
http://vbn.aau.dk/files/76360540/SIW12_69.pdf
https://doi.org/10.1109/TPAS.1968.292150
http://ieeexplore.ieee.org/document/4073461/
http://ieeexplore.ieee.org/document/4073461/
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://doi.org/10.1109/jpets.2015.2405069

BIBLIOGRAPHY

[25] Roger C. Dugan and Thomas E. McDermott. “An open source
platform for collaborating on smart grid research”. In: 2011 IEEE
Power and Energy Society General Meeting. 2011, pp. 1–7. doi:
10.1109/PES.2011.6039829.

[26] Roger C. Dugan and Davis Montenegro. Reference Guide - The
Open Distribution System Simulator. Tech. rep. EPRI, 2020. url:
https : / / sourceforge . net / p / electricdss / code / HEAD /
tree / trunk / Distrib / Doc / OpenDSSManual . pdf (visited on
07/25/2020).

[27] L. A. Dunstan. “Digital Load Flow Studies”. In: Transactions of
the American Institute of Electrical Engineers 73.1 (Jan. 1954),
pp. 825–832. issn: 00972460. doi: 10 . 1109 / AIEEPAS . 1954 .
4498891. url: http : / / ieeexplore . ieee . org / document /
4498891/.

[28] L. A. Dunstan. “Machine Computing of Networks”. In: Electrical
Engineering 66 (1947), pp. 901–906. doi: 10.1109/EE.1947.
6443719. url: https : / / ieeexplore . ieee . org / document /
6443719/.

[29] L. A. Dunstan. “The General Solution Method of Power Network
Analysis”. In: Transactions of the American Institute of Electrical
Engineers 67 (1948), pp. 631–639. issn: 00963860. doi: 10.1109/
T-AIEE.1948.5059722.

[30] Simon Eilenberger et al. “Probabilistic simulation for LV-grid op-
timization with new network components”. In: 22nd International
Conference and Exhibition on Electricity Distribution (CIRED
2013). 2013, pp. 1–5. doi: 10.1049/cp.2013.0813.

[31] U. Eminoglu and M. H. Hocaoglu. “Distribution systems for-
ward/backward sweep-based power flow algorithms: A review
and comparison study”. In: Electric Power Components and Sys-
tems 37.1 (2009), pp. 91–110. issn: 15325008. doi: 10 . 1080 /
15325000802322046.

[32] Entso-e. Phase Shift Transformers Modelling. Tech. rep. Brussels:
ENTSO-E, 2014, pp. 1–27. url: https://eepublicdownloads.
entsoe.eu/clean- documents/CIM_documents/Grid_Model_
CIM/ENTSOE_CGMES_v2.4_28May2014_PSTmodelling.pdf.

150

https://doi.org/10.1109/PES.2011.6039829
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/OpenDSSManual.pdf
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/OpenDSSManual.pdf
https://doi.org/10.1109/AIEEPAS.1954.4498891
https://doi.org/10.1109/AIEEPAS.1954.4498891
http://ieeexplore.ieee.org/document/4498891/
http://ieeexplore.ieee.org/document/4498891/
https://doi.org/10.1109/EE.1947.6443719
https://doi.org/10.1109/EE.1947.6443719
https://ieeexplore.ieee.org/document/6443719/
https://ieeexplore.ieee.org/document/6443719/
https://doi.org/10.1109/T-AIEE.1948.5059722
https://doi.org/10.1109/T-AIEE.1948.5059722
https://doi.org/10.1049/cp.2013.0813
https://doi.org/10.1080/15325000802322046
https://doi.org/10.1080/15325000802322046
https://eepublicdownloads.entsoe.eu/clean-documents/CIM_documents/Grid_Model_CIM/ENTSOE_CGMES_v2.4_28May2014_PSTmodelling.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/CIM_documents/Grid_Model_CIM/ENTSOE_CGMES_v2.4_28May2014_PSTmodelling.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/CIM_documents/Grid_Model_CIM/ENTSOE_CGMES_v2.4_28May2014_PSTmodelling.pdf

BIBLIOGRAPHY

[33] Albert Fazio. “Future directions of non-volatile memory in com-
pute applications”. In: 2009 IEEE International Electron Devices
Meeting (IEDM). 2009, pp. 1–4. doi: 10 . 1109 / IEDM . 2009 .
5424257. url: https : / / ieeexplore . ieee . org / document /
5424257.

[34] A. J. Flueck and H.-D. Chiang. “Solving the nonlinear power flow
equations with an inexact Newton method using GMRES”. In:
IEEE Transactions on Power Systems 13.2 (1998), pp. 267–273.
doi: 10.1109/59.667330. url: https://ieeexplore.ieee.
org/document/667330/authors%7B%5C#%7Dauthors.

[35] Agner Fog. 4. Instruction tables. Tech. rep. Technical University
of Denmark, 2021. url: https://www.agner.org/optimize/
instruction_tables.pdf (visited on 10/21/2021).

[36] Agner Fog. The microarchitecture of Intel and AMD CPU’s. Tech.
rep. Technical University of Denmark, 2020. url: https://www.
agner.org/optimize/microarchitecture.pdf.

[37] S. Ghosh and D. Das. “Method for load-flow solution of radial
distribution networks”. In: IEE Proc.-Gener. Transm. Distrib.
Vol. 146. 6. 1999. doi: 10.1049/ip-gtd:19990464.

[38] Smarajit Ghosh and Karma Sonam Sherpa. “An Efficient Method
for Load−Flow Solution of Radial Distribution Networks”. In:
International Journal of Electrical and Computer Engineering 2
(2008), pp. 2094–2101.

[39] A. F. Glimn and G. W. Stagg. “Automatic Calculation of Load
Flows”. In: Transactions of the American Institute of Electrical
Engineers. Part III: Power Apparatus and Systems 76.3 (Apr.
1957), pp. 817–825. issn: 0097-2460. doi: 10.1109/AIEEPAS.
1957.4499665. url: http://ieeexplore.ieee.org/document/
4499665/.

[40] Masoud Aliakbar Golkar. “A Novel Method for Load Flow Anal-
ysis of Unbalanced Three-Phase Radial Distribution Networks”.
In: Turk J Elec Engin 15.3 (2007). url: https://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.62.9476&rep=
rep1&type=pdf.

[41] Gene H. Golub and Charles F. Van Loan. Matrix Computations.
3rd ed. Baltimore: The John Hopkins University Press, 1996.
isbn: 0-8018-5414-8.

151

https://doi.org/10.1109/IEDM.2009.5424257
https://doi.org/10.1109/IEDM.2009.5424257
https://ieeexplore.ieee.org/document/5424257
https://ieeexplore.ieee.org/document/5424257
https://doi.org/10.1109/59.667330
https://ieeexplore.ieee.org/document/667330/authors%7B%5C#%7Dauthors
https://ieeexplore.ieee.org/document/667330/authors%7B%5C#%7Dauthors
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://doi.org/10.1049/ip-gtd:19990464
https://doi.org/10.1109/AIEEPAS.1957.4499665
https://doi.org/10.1109/AIEEPAS.1957.4499665
http://ieeexplore.ieee.org/document/4499665/
http://ieeexplore.ieee.org/document/4499665/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.9476&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.9476&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.9476&rep=rep1&type=pdf

BIBLIOGRAPHY

[42] Abdellatif Hamouda and Khaled Zehar. “Improved algorithm for
radial distribution networks load flow solution”. In: International
Journal of Electrical Power & Energy Systems 33.3 (Mar. 2011),
pp. 508–514. issn: 01420615. doi: 10.1016/J.IJEPES.2010.
11 . 004. url: https : / / www . sciencedirect . com / science /
article/abs/pii/S0142061510002036.

[43] R.J. Hanson, F.T. Krogh, and C.L. Lawson. A Proposal for Stan-
dard Linear Algebra Subprograms. Tech. rep. Jet Propulsion Li-
brary, California Institue of Technology, Pasadena, California,
1973. url: https://ntrs.nasa.gov/citations/19740005175
(visited on 10/21/2021).

[44] H. L. Hazen, O. R. Schurig, and M. F. Gardner. “The M. I. T. Net-
work Analyzer: Design and Application to Power System Prob-
lems”. In: Transactions of the American Institute of Electrical
Engineers 49.3 (1930), pp. 1102–1113.

[45] J. M. Henderson. “Automatic Digital Computer Solution of Load
Flow Studies”. In: Transactions of the American Institute of Elec-
trical Engineers. Part III: Power Apparatus and Systems 73.2
(1955), pp. 1696–1702. issn: 0097-2460. doi: 10.1109/AIEEPAS.
1954.4499023.

[46] John L. Hennessy and David A. Patterson. Computer Architecture
- A Quantitative Approach, Fifth Edition. Morgan Kaufmann,
2012. isbn: 978-0-12811-905-1.

[47] Raphael Hunger. Floating Point Operations in Matrix-Vector Cal-
culus. Tech. rep. Technische Universität München, 2007. url:
https://mediatum.ub.tum.de/doc/625604/625604 (visited
on 09/21/2021).

[48] IBM. IBM Archives: 650 Feeds and speeds. 2000. url: http://
www-03.ibm.com/ibm/history/exhibits/650/650_fs1.html.

[49] Graphical Symbols for Diagrams. Standard. Geneva, CH: Inter-
national Electrotechnical Commission, 2012. url: https://webs
tore.iec.ch/publication/2723.

[50] IEEE PES Distribution System Analysis Subcommitee Radial Test
Feeder. 2020. url: https://site.ieee.org/pes-testfeeders/
(visited on 12/23/2020).

152

https://doi.org/10.1016/J.IJEPES.2010.11.004
https://doi.org/10.1016/J.IJEPES.2010.11.004
https://www.sciencedirect.com/science/article/abs/pii/S0142061510002036
https://www.sciencedirect.com/science/article/abs/pii/S0142061510002036
https://ntrs.nasa.gov/citations/19740005175
https://doi.org/10.1109/AIEEPAS.1954.4499023
https://doi.org/10.1109/AIEEPAS.1954.4499023
https://mediatum.ub.tum.de/doc/625604/625604
http://www-03.ibm.com/ibm/history/exhibits/650/650_fs1.html
http://www-03.ibm.com/ibm/history/exhibits/650/650_fs1.html
https://webstore.iec.ch/publication/2723
https://webstore.iec.ch/publication/2723
https://site.ieee.org/pes-testfeeders/

BIBLIOGRAPHY

[51] IEEE Task Force on Load Representation for Dynamic Perfor-
mance. “Load Representation For Dynamic Performance Analy-
sis”. In: IEEE Transactions on Power Systems 8.2 (1993), pp. 472–
482. doi: 10.1109 /59. 260837. url: https:/ /ieeexplore.
ieee.org/document/260837.

[52] Intel. “Intel 64 and IA-32 Architectures Optimization Reference
Manual”. In: Intel Technology Journal (2016). issn: 15222594.
doi: 10.1535/itj.0903.05. url: https://www.intel.com/
content/dam/www/public/us/en/documents/manuals/64-ia-
32-architectures-optimization-manual.pdf.

[53] Intel. Math Kernel Library. Dec. 24, 2020. url: https://softw
are.intel.com/content/www/us/en/develop/tools/oneapi/
components/onemkl.html.

[54] Intel oneAPI Math Kernel Library. Intel. 2021. url: https://
www . intel . com / content / dam / develop / external / us / en /
documents/onemkl-developerreference-c.pdf.

[55] S. Iwamoto and Y. Tamura. “A Load Flow Calculation Method
for Ill-Conditioned Power Systems”. In: IEEE Transactions on
Power Apparatus and Systems PAS-100.4 (1981), pp. 1736–1743.
doi: 10.1109/TPAS.1981.316511.

[56] Philip D. Jennings and George E. Quinan. “The Use of Business
Machines in Determining the Distribution of in Power Line Net-
works Load and Reactive Components”. In: Electrical Engineering
65.12 (1946), pp. 1045–1046. doi: 10.1109/EE.1946.6440026.

[57] R. H. Jordan. “Rapidly Converging Digital Load Flow”. In: Trans-
actions of the American Institute of Electrical Engineers. Part III:
Power Apparatus and Systems 76.3 (Apr. 1957), pp. 1433–1438.
issn: 0097-2460. doi: 10.1109/AIEEPAS.1957.4499813. url:
http://ieeexplore.ieee.org/document/4499813/.

[58] W. Kahan. A Logarithm Too Clever by Half. 2004. url: https:
//people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT (visited
on 10/20/2020).

[59] M.Z. Kamh and R. Iravani. “A Sequence Frame-Based Dis-
tributed Slack Bus Model for Energy Management of Active
Distribution Networks”. In: IEEE Transactions on Smart Grid
3.2 (2012), pp. 828–836. doi: 10.1109/TSG.2012.2188915. url:
https://ieeexplore.ieee.org/abstract/document/6193195.

153

https://doi.org/10.1109/59.260837
https://ieeexplore.ieee.org/document/260837
https://ieeexplore.ieee.org/document/260837
https://doi.org/10.1535/itj.0903.05
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://www.intel.com/content/dam/develop/external/us/en/documents/onemkl-developerreference-c.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/onemkl-developerreference-c.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/onemkl-developerreference-c.pdf
https://doi.org/10.1109/TPAS.1981.316511
https://doi.org/10.1109/EE.1946.6440026
https://doi.org/10.1109/AIEEPAS.1957.4499813
http://ieeexplore.ieee.org/document/4499813/
https://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT
https://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT
https://doi.org/10.1109/TSG.2012.2188915
https://ieeexplore.ieee.org/abstract/document/6193195

BIBLIOGRAPHY

[60] Edward W. Kimbark, James H. Starr, and James E. van Ness.
“A Compact, Inexpensive A-C Network Analyzer”. In: Transac-
tions of the American Institute of Electrical Engineers, Part I:
Communication and Electronics 71.1 (1952), pp. 122–128. doi:
10.1109/TCE.1952.6371897. url: https://ieeexplore.ieee.
org/document/6371897/.

[61] LAPACK Website. 2020. url: http://www.netlib.org/lapack/
(visited on 01/13/2020).

[62] Robert Larson, William Tinney, and John Peschon. “State Es-
timation in Power Systems Part I: Theory and Feasibility”. In:
IEEE Transactions on Power Apparatus and Systems PAS-89.3
(1970), pp. 345–352. issn: 0018-9510. doi: 10 . 1109 / TPAS .
1970.292711. url: http://ieeexplore.ieee.org/document/
4074060/.

[63] M.A. Laughton and M.W. Humphrey Davies. “Numerical tech-
niques in solution of power-system load-flow problems”. In: Pro-
ceedings of the Institution of Electrical Engineers 111.9 (1964),
pp. 1575–1588. issn: 00203270. doi: 10.1049/piee.1964.0259.
url: https://ieeexplore.ieee.org/document/5248026.

[64] M.A. Laughton et al. “Discussion on Investigation of the load-flow
problem and Bootstrap Gauss-Seidel load flow”. In: Proceedings of
the Institution of Electrical Engineers 117.2 (1970), pp. 397–400.
doi: 10.1049/piee.1970.0078. url: https://ieeexplore.
ieee.org/document/5249041.

[65] C. L. Lawson et al. “Basic Linear Algebra Subprograms for For-
tran Usage”. In: ACM Trans. Math. Softw. 5.3 (Sept. 1979),
pp. 308–323. issn: 0098-3500. doi: 10.1145/ 355841.355847.
url: https://doi.org/10.1145/355841.355847.

[66] H. Le Nguyen. “Newton-Raphson method in complex form [power
system load flow analysis]”. In: IEEE Transactions on Power Sys-
tems 12.3 (1997), pp. 1355–1359. doi: 10.1109/59.630481.

[67] F. de Leon and A. Sernlyen. “Iterative solvers in the Newton
power flow problem: preconditioners, inexact solutions and par-
tial Jacobian updates”. In: IEE Proceedings - Generation, Trans-
mission and Distribution 149.4 (2002), pp. 479–484. doi: 10 .
1049/ip-gtd:20020172. url: https://ieeexplore.ieee.org/
document/1024195.

154

https://doi.org/10.1109/TCE.1952.6371897
https://ieeexplore.ieee.org/document/6371897/
https://ieeexplore.ieee.org/document/6371897/
http://www.netlib.org/lapack/
https://doi.org/10.1109/TPAS.1970.292711
https://doi.org/10.1109/TPAS.1970.292711
http://ieeexplore.ieee.org/document/4074060/
http://ieeexplore.ieee.org/document/4074060/
https://doi.org/10.1049/piee.1964.0259
https://ieeexplore.ieee.org/document/5248026
https://doi.org/10.1049/piee.1970.0078
https://ieeexplore.ieee.org/document/5249041
https://ieeexplore.ieee.org/document/5249041
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1109/59.630481
https://doi.org/10.1049/ip-gtd:20020172
https://doi.org/10.1049/ip-gtd:20020172
https://ieeexplore.ieee.org/document/1024195
https://ieeexplore.ieee.org/document/1024195

BIBLIOGRAPHY

[68] David Levinthal. Performance Analysis Guide for Intel ® Core ™
i7 Processor and Intel ® Xeon ™ 5500 processors. Tech. rep. Intel
Corporation, 2009, pp. 1–72. url: https://software.intel.
com/sites/products/collateral/hpc/vtune/performance_
analysis_guide.pdf.

[69] G.X. Luo and A. Semlyen. “Efficient load flow for large weakly
meshed networks”. In: IEEE Transactions on Power Systems 5.4
(1990), pp. 1309–1316. doi: 10.1109/59.99382.

[70] Manuel Marin. “GPU-Enhanced Power Flow Analysis”. PhD the-
sis. Université de Perpignan via Domitia, 2016. url: https://
hal.archives-ouvertes.fr/tel-01299182.

[71] Federico Milano. Power System Modelling and Scripting. Springer,
2010. isbn: 9783642136689. doi: 10.1007/978-3-642-13669-6.
url: https://link.springer.com/book/10.1007/978-3-642-
13669-6.

[72] Jovica V. Milanović et al. “International industry practice on
power system load modeling”. In: IEEE Transactions on Power
Systems 28.3 (2013), pp. 3038–3046. issn: 08858950. doi: 10 .
1109/TPWRS.2012.2231969.

[73] Sivkumar Mishra and Debapriya Das. “Distribution System Load
Flow Methods: A Review”. In: Icfai University Press (IUP) Jour-
nal of Electrical and Electronics Engineering 1 (Apr. 2008), pp. 7–
25.

[74] Vijay Laxmi Mishra, Manish Madhav, and R Bajpai. “Compar-
ison of Different Techniques for Distribution System Load Flow
Analysis-A Review”. In: International Journal for Scientific Re-
search and Development 3 (11 Jan. 2016), pp. 731–735. issn: 2321-
0613.

[75] R. K. Moore. “A General Course in Traveling Waves”. In: IRE
Transactions on Education 3.1 (1960), pp. 15–19. issn: 0893-7141.
doi: 10.1109/TE.1960.4322115. url: http://ieeexplore.
ieee.org/document/4322115/.

[76] Ulrich Münz and Diego Romeres. “Region of Attraction of Power
Systems”. In: IFAC Proceedings Volumes 46.27 (2013). 4th IFAC
Workshop on Distributed Estimation and Control in Networked
Systems (2013), pp. 49–54. issn: 1474-6670. doi: https://doi.or
g/10.3182/20130925-2-DE-4044.00018. url: https://www.sc
iencedirect.com/science/article/pii/S1474667015402071.

155

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://doi.org/10.1109/59.99382
https://hal.archives-ouvertes.fr/tel-01299182
https://hal.archives-ouvertes.fr/tel-01299182
https://doi.org/10.1007/978-3-642-13669-6
https://link.springer.com/book/10.1007/978-3-642-13669-6
https://link.springer.com/book/10.1007/978-3-642-13669-6
https://doi.org/10.1109/TPWRS.2012.2231969
https://doi.org/10.1109/TPWRS.2012.2231969
https://doi.org/10.1109/TE.1960.4322115
http://ieeexplore.ieee.org/document/4322115/
http://ieeexplore.ieee.org/document/4322115/
https://doi.org/https://doi.org/10.3182/20130925-2-DE-4044.00018
https://doi.org/https://doi.org/10.3182/20130925-2-DE-4044.00018
https://www.sciencedirect.com/science/article/pii/S1474667015402071
https://www.sciencedirect.com/science/article/pii/S1474667015402071

BIBLIOGRAPHY

[77] Walter Murray, Tomas Tinoco De Rubira, and Adam Wigington.
Improving the robustness of Newton-based power flow methods to
cope with poor initial points. Tech. rep. Stanford University, CA,
2013. url: https://web.stanford.edu/class/cme334/docs/
2013-10-29-murray_newton_power_flow.pdf.

[78] Makwana Nirbhaykumar. “Methods for Load Flow Analysis of
Weakly Meshed Distribution System”. In: International Journal
of Scientific and Research Publications 2.3 (2012). url: http:
/ / www . ijsrp . org / research _ paper _ mar2012 / ijsrp - Mar -
2012-95.pdf.

[79] Dietrich Oeding and Bernd Rüdiger Oswald. Elektrische Kraft-
werke und Netze, 7. Auflage. Springer-Verlag Berlin Heidelberg,
2011.

[80] A. Pandey et al. “Robust Power Flow and Three-Phase Power
Flow Analyses”. In: IEEE Transactions on Power Systems 34.1
(2019), pp. 616–626. doi: 10.1109/TPWRS.2018.2863042. url:
https://ieeexplore.ieee.org/document/8424869.

[81] Konstantin Papaillou, ed. Handbook of Power Systems. Springer-
Verlag Berlin Heidelberg, 2021.

[82] Ruud van der Pas. “Memory Hierarchy in Cache Based Systems”.
In: (2002). url: http://citeseerx.ist.psu.edu/viewdoc/
download;jsessionid=81413C949E54E995E59A04B37F3D8A58?
doi=10.1.1.137.7841%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=
pdf.

[83] J. Peschon, D.W. Bree, and L.P. Hajdu. “Optimal power-flow
solutions for power system planning”. In: Proceedings of the IEEE
60.1 (1972), pp. 64–70. issn: 0018-9219. doi: 10.1109/PROC.
1972.8558. url: http://ieeexplore.ieee.org/document/
1450488/.

[84] Norris M. Peterson and W. Scott Meyer. “Automatic Adjust-
ment of Transformer and Phase-Shifter Taps in the Newton Power
Flow”. In: IEEE Transactions on Power Apparatus and Systems
PAS-90.1 (1971), pp. 103–108. issn: 00189510. doi: 10.1109/
TPAS.1971.292904.

156

https://web.stanford.edu/class/cme334/docs/2013-10-29-murray_newton_power_flow.pdf
https://web.stanford.edu/class/cme334/docs/2013-10-29-murray_newton_power_flow.pdf
http://www.ijsrp.org/research_paper_mar2012/ijsrp-Mar-2012-95.pdf
http://www.ijsrp.org/research_paper_mar2012/ijsrp-Mar-2012-95.pdf
http://www.ijsrp.org/research_paper_mar2012/ijsrp-Mar-2012-95.pdf
https://doi.org/10.1109/TPWRS.2018.2863042
https://ieeexplore.ieee.org/document/8424869
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=81413C949E54E995E59A04B37F3D8A58?doi=10.1.1.137.7841%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=81413C949E54E995E59A04B37F3D8A58?doi=10.1.1.137.7841%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=81413C949E54E995E59A04B37F3D8A58?doi=10.1.1.137.7841%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=81413C949E54E995E59A04B37F3D8A58?doi=10.1.1.137.7841%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
https://doi.org/10.1109/PROC.1972.8558
https://doi.org/10.1109/PROC.1972.8558
http://ieeexplore.ieee.org/document/1450488/
http://ieeexplore.ieee.org/document/1450488/
https://doi.org/10.1109/TPAS.1971.292904
https://doi.org/10.1109/TPAS.1971.292904

BIBLIOGRAPHY

[85] F. Pilo et al. Planning and Optimization Methods for Active Dis-
tribution Systems Working Group C6.19. Tech. rep. August. Ci-
gre, 2014. url: https : / / e - cigre . org / publication / ELT _
276_7-planning-and-optimization-methods-for-active-
distribution-systems.

[86] Sergio Pissanetzky. Sparse Matrix Technology. Academic Press,
London, 1984. isbn: 978-0-9762775-3-8.

[87] R. Podmore and J. Undrill. “Modified Nodal Iterative Load
Flow Algorithm to Handle Series Capacitive Branches”. In: IEEE
Transactions on Power Apparatus and Systems PAS-92.4 (July
1973), pp. 1379–1387. issn: 00189510. doi: 10 . 1109 / TPAS .
1973.293545. url: http://ieeexplore.ieee.org/document/
4075219/.

[88] R. Pritchard and C. Pottle. “High-Speed Power Flows Using At-
tached Scientific (”Array”) Processors”. In: IEEE Transactions
on Power Apparatus and Systems PAS-101.1 (1982), pp. 249–253.
doi: 10.1109/TPAS.1982.317345.

[89] Alexander Probst. “Auswirkungen von Elektromobilität auf Ener-
gieversorgungsnetze analysiert auf Basis probabilistischer Netz-
planung”. PhD thesis. Universität Stuttgart, 2014. url: https:
//www.ieh.uni-stuttgart.de/dokumente/dissertationen/
Diss_Probst.pdf.

[90] D. Rajicic, R. Ackovski, and R. Taleski. “Voltage correction
power flow”. In: IEEE Transactions on Power Delivery 9.2 (1994),
pp. 1056–1062. doi: 10.1109/61.296308.

[91] Shruti Rao et al. “The Holomorphic Embedding Method Applied
to the Power-Flow Problem”. In: IEEE Transactions on Power
Systems 31.5 (Sept. 2016), pp. 3816–3828. issn: 08858950. doi:
10 . 1109 / TPWRS . 2015 . 2503423. url: http : / / ieeexplore .
ieee.org/document/7352383/.

[92] L. Rese, A.S. Costa, and A.S. Silva. “A modified load flow algo-
rithm for microgrids operating in islanded mode”. In: IEEE PES
Conference on Innovative Smart Grid Technologies (ISGT Latin
America). 2013. doi: 10.1109/ISGT- LA.2013.6554384. url:
https://ieeexplore.ieee.org/abstract/document/6554384.

157

https://e-cigre.org/publication/ELT_276_7-planning-and-optimization-methods-for-active-distribution-systems
https://e-cigre.org/publication/ELT_276_7-planning-and-optimization-methods-for-active-distribution-systems
https://e-cigre.org/publication/ELT_276_7-planning-and-optimization-methods-for-active-distribution-systems
https://doi.org/10.1109/TPAS.1973.293545
https://doi.org/10.1109/TPAS.1973.293545
http://ieeexplore.ieee.org/document/4075219/
http://ieeexplore.ieee.org/document/4075219/
https://doi.org/10.1109/TPAS.1982.317345
https://www.ieh.uni-stuttgart.de/dokumente/dissertationen/Diss_Probst.pdf
https://www.ieh.uni-stuttgart.de/dokumente/dissertationen/Diss_Probst.pdf
https://www.ieh.uni-stuttgart.de/dokumente/dissertationen/Diss_Probst.pdf
https://doi.org/10.1109/61.296308
https://doi.org/10.1109/TPWRS.2015.2503423
http://ieeexplore.ieee.org/document/7352383/
http://ieeexplore.ieee.org/document/7352383/
https://doi.org/10.1109/ISGT-LA.2013.6554384
https://ieeexplore.ieee.org/abstract/document/6554384

BIBLIOGRAPHY

[93] Walter Robertson. How to measure FLOPS of a MatLab function.
2017. url: https://se.mathworks.com/matlabcentral/answ
ers/172095-how-to-measure-flops-of-a-matlab-function
(visited on 10/02/2021).

[94] Tomas Tinoco De Rubira. Alternative methods for solving power
flow problems. Tech. rep. Stanford University, CA, 2012. url:
http://web.stanford.edu/class/cme334/docs/2013-10-29-
rubira_power_flow.pdf.

[95] Nobuo Sato and W. F. Tinney. “Techniques for Exploiting the
Sparsity of the Network Admittance Matrix”. In: 82.69 (Dec.
1963), pp. 944–950. issn: 00189510. doi: 10.1109/TPAS.1963.
291477. url: http : / / ieeexplore . ieee . org / document /
4072891/.

[96] Patrick S. Sauter, Christian A. Braun, and Mathias Kluwe.
“Comparison of the Holomorphic Embedding Load Flow Method
with Established Power Flow Algorithms and a New Hybrid
Approach”. In: 2017 Ninth Annual IEEE Green Technologies
Conference. 2017. doi: 10.1109/GreenTech.2017.36.

[97] K. P. Schneider et al. “Analytic Considerations and Design Basis
for the IEEE Distribution Test Feeders”. In: IEEE Transactions
on Power Systems 33.3 (2018), pp. 3181–3188. issn: 08858950.
doi: 10.1109/TPWRS.2017.2760011. url: https://www.osti.
gov/pages/servlets/purl/1432185.

[98] D. Shirmohammadi et al. “A compensation-based power flow
method for weakly meshed distribution and transmission net-
works”. In: IEEE Transactions on Power Systems 3.2 (1988),
pp. 753–762. doi: 10.1109/59.192932.

[99] Steven S. Skiena. The Algorithm Design Manual. Springer, 2008.
isbn: 978-1-84800-069-8. doi: 10.1007/978-1-84800-070-4.

[100] John Smart, Warren Powell, and Stephen Schey. “Extended
range electric vehicle driving and charging behavior observed
early in the EV project”. In: SAE Technical Papers 2 (2013).
issn: 26883627. doi: 10.4271/2013-01-1441.

[101] James E. Smith. “A Study of Branch Prediction Strategies”. In:
Proceedings of the 8th Annual Symposium on Computer Architec-
ture. ISCA ’81. Minneapolis, Minnesota, USA: IEEE Computer
Society Press, 1981, pp. 135–148.

158

https://se.mathworks.com/matlabcentral/answers/172095-how-to-measure-flops-of-a-matlab-function
https://se.mathworks.com/matlabcentral/answers/172095-how-to-measure-flops-of-a-matlab-function
http://web.stanford.edu/class/cme334/docs/2013-10-29-rubira_power_flow.pdf
http://web.stanford.edu/class/cme334/docs/2013-10-29-rubira_power_flow.pdf
https://doi.org/10.1109/TPAS.1963.291477
https://doi.org/10.1109/TPAS.1963.291477
http://ieeexplore.ieee.org/document/4072891/
http://ieeexplore.ieee.org/document/4072891/
https://doi.org/10.1109/GreenTech.2017.36
https://doi.org/10.1109/TPWRS.2017.2760011
https://www.osti.gov/pages/servlets/purl/1432185
https://www.osti.gov/pages/servlets/purl/1432185
https://doi.org/10.1109/59.192932
https://doi.org/10.1007/978-1-84800-070-4
https://doi.org/10.4271/2013-01-1441

BIBLIOGRAPHY

[102] Glenn W. Stagg and Ahmed H. El-Abiad. Computer Methods
In Power System Analysis. McGraw-Hill Book Company, 1968,
p. 427. isbn: 0-07-085764-4.

[103] B. Stott and O. Alsac. “Fast Decoupled Load Flow”. In: IEEE
Transactions on Power Apparatus and Systems PAS-93.3 (1974),
pp. 859–869. doi: 10.1109/TPAS.1974.293985. url: https:
//ieeexplore.ieee.org/abstract/document/4075431.

[104] Brian Stott. “Review of Load-Flow Calculation Methods”. In:
Proceedings of the IEEE 62.7 (1974), pp. 916–929. issn: 15582256.
doi: 10.1109/PROC.1974.9544. url: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1451474.

[105] Brian Stott, Jorge Jardim, and Ongun Alsac. “DC Power Flow
Revisited”. In: IEEE Transactions on Power Systems 24.3 (2009),
pp. 1290–1300. doi: 10.1109/TPWRS.2009.2021235.

[106] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Sys-
tems, Fourth Edition. Pearson, 2015. isbn: 978-0-13359-162-0.

[107] Jen-Hao Teng. “A direct approach for distribution system load
flow solutions”. In: IEEE Transactions on Power Delivery 18.3
(2003), pp. 882–887. doi: 10.1109/TPWRD.2003.813818.

[108] L. Thurner et al. “pandapower — An Open-Source Python Tool
for Convenient Modeling, Analysis, and Optimization of Electric
Power Systems”. In: IEEE Transactions on Power Systems 33.6
(Nov. 2018), pp. 6510–6521. issn: 0885-8950. doi: 10.1109/TPW
RS.2018.2829021.

[109] William F. Tinney and J. W. Walker. “Direct solutions of sparse
network equations by optimally ordered triangular factorization”.
In: Proceedings of the IEEE 55.11 (1967), pp. 1801–1809. issn:
0018-9219. doi: 10.1109/PROC.1967.6011. url: http://ieeex
plore.ieee.org/document/1447941/.

[110] J. A. Treece. “Bootstrap Gauss-Seidel load flow”. In: Proceedings
of the Institution of Electrical Engineers 116.5 (1969), pp. 866–
870. doi: 10.1049/piee.1969.0161.

[111] A. Trias. “The Holomorphic Embedding Load Flow method”. In:
2012 IEEE Power and Energy Society General Meeting. IEEE,
July 2012, pp. 1–8. isbn: 978-1-4673-2729-9. doi: 10 . 1109 / P
ESGM . 2012 . 6344759. url: http : / / ieeexplore . ieee . org /
document/6344759/.

159

https://doi.org/10.1109/TPAS.1974.293985
https://ieeexplore.ieee.org/abstract/document/4075431
https://ieeexplore.ieee.org/abstract/document/4075431
https://doi.org/10.1109/PROC.1974.9544
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1451474
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1451474
https://doi.org/10.1109/TPWRS.2009.2021235
https://doi.org/10.1109/TPWRD.2003.813818
https://doi.org/10.1109/TPWRS.2018.2829021
https://doi.org/10.1109/TPWRS.2018.2829021
https://doi.org/10.1109/PROC.1967.6011
http://ieeexplore.ieee.org/document/1447941/
http://ieeexplore.ieee.org/document/1447941/
https://doi.org/10.1049/piee.1969.0161
https://doi.org/10.1109/PESGM.2012.6344759
https://doi.org/10.1109/PESGM.2012.6344759
http://ieeexplore.ieee.org/document/6344759/
http://ieeexplore.ieee.org/document/6344759/

BIBLIOGRAPHY

[112] Antonio Trias. Fundamentals of the Holomorphic Embedding
Load-Flow Method. Tech. rep. Sant Cugat del Valles: Aplica-
ciones en Informatica Avanzada, 2015. arXiv: 1509 . 02421v1.
url: https://arxiv.org/pdf/1509.02421.pdf.

[113] S.C. Tripathy et al. “Load-Flow Solutions for Ill-Conditioned
Power Systems by a Newton-Like Method”. In: IEEE Trans-
actions on Power Apparatus and Systems PAS-101.10 (1982),
pp. 3648–3657. doi: 10.1109/TPAS.1982.317050.

[114] Andrew Urquhart and Murray Thomson. “Resolving Inconsisten-
cies In Three-Phase Current Measurements”. In: Cired 2017. June.
2017, pp. 12–15.

[115] James E. Van Ness. “Iteration Methods for Digital Load Flow
Studies”. In: Transactions of the American Institute of Electrical
Engineers. Part III: Power Apparatus and Systems 78.3 (Apr.
1959), pp. 583–586. issn: 00972460. doi: 10 . 1109 / AIEEPAS .
1959.4500383. url: http://ieeexplore.ieee.org/document/
4500383/.

[116] Stephen Vavasis et al. Exchanges in NA Digest regarding flops.
2000. url: http://www.stat.uchicago.edu/~lekheng/course
s/309f14/flops/vmdd.html (visited on 10/02/2021).

[117] Lucian N. Vintan. “Neural Branch Prediction: From the First
Ideas, to Implementations in Advanced Microprocessors and Med-
ical Applications”. In: Proceedings of the Romanian Academy, Se-
ries A. Vol. 20. 2/2019. 2019, pp. 205–212. url: https://acad.
ro/sectii2002/proceedings/doc2019-2/12-Vintan.pdf.

[118] Gerhard Walker. “Impact and Chances of Electric Mobility for the
German Low Voltage Distribution Grids”. PhD thesis. Universität
Stuttgart, 2018.

[119] Y. Wang et al. “Analysis of ill-conditioned power-flow problems
using voltage stability method”. In: IEE Proc.-Gener. Transm.
Distrib. 148.5 (2001), pp. 384–390. doi: 10 . 1149 / ip - gtd :
20010424.

[120] J. B. Ward and H. W. Hale. “Digital Computer Solution of Power-
Flow Problems”. In: Transactions of the American Institute of
Electrical Engineers. Part III: Power Apparatus and Systems 75.3
(1956), pp. 398–404. issn: 00972460. doi: 10.1109/AIEEPAS.
1956.4499318.

160

https://arxiv.org/abs/1509.02421v1
https://arxiv.org/pdf/1509.02421.pdf
https://doi.org/10.1109/TPAS.1982.317050
https://doi.org/10.1109/AIEEPAS.1959.4500383
https://doi.org/10.1109/AIEEPAS.1959.4500383
http://ieeexplore.ieee.org/document/4500383/
http://ieeexplore.ieee.org/document/4500383/
http://www.stat.uchicago.edu/~lekheng/courses/309f14/flops/vmdd.html
http://www.stat.uchicago.edu/~lekheng/courses/309f14/flops/vmdd.html
https://acad.ro/sectii2002/proceedings/doc2019-2/12-Vintan.pdf
https://acad.ro/sectii2002/proceedings/doc2019-2/12-Vintan.pdf
https://doi.org/10.1149/ip-gtd:20010424
https://doi.org/10.1149/ip-gtd:20010424
https://doi.org/10.1109/AIEEPAS.1956.4499318
https://doi.org/10.1109/AIEEPAS.1956.4499318

BIBLIOGRAPHY

[121] Pascal Wiest. “Probabilistische Verteilnetzplanung zur opti-
mierten Integration flexibler dezentraler Erzeuger und Ver-
braucher”. PhD thesis. Universität Stuttgart, 2018. url: https:
//www.ieh.uni-stuttgart.de/dokumente/dissertationen/
2018_Dissertation_Wiest.pdf.

[122] Virginia Vassilevska Williams. “Multiplying matrices faster than
Coppersmith-Winograd”. In: Proceedings of the 44th symposium
on Theory of Computing - STOC ’12. New York, New York, USA:
ACM Press, 2012, pp. 887–898. isbn: 9781450312455. doi: 10.
1145/2213977.2214056. url: https://dl.acm.org/doi/10.
1145/2213977.2214056.

[123] Chao Zhai and Hung D. Nguyen. “Region of Attraction for Power
Systems using Gaussian Process and Converse Lyapunov Func-
tion - Part 1: Theoretical Framework and Off-line Study”. In:
CoRR abs/1906.03590 (2019). arXiv: 1906.03590. url: http:
//arxiv.org/abs/1906.03590.

[124] Fan Zhang and C.S. Cheng. “A modified Newton method for ra-
dial distribution system power flow analysis”. In: IEEE Transac-
tions on Power Systems 12.1 (1997), pp. 389–397. doi: 10.1109/
59.575728.

[125] Ray D. Zimmerman. AC Power Flows, Generalized OPF Costs
and their Derivatives using Complex Matrix Notation, Rev. 4.
Tech. rep. Power Systems Engineering Research Center (Pserc),
2011, p. 25. doi: 10.13140/2.1.2731.2327. url: http://www.
pserc.cornell.edu/matpower/TN2-OPF-Derivatives.pdf.

[126] Ray Daniel Zimmerman. “Comprehensive distribution power flow
modeling, formulation, solution algorithm and analysis”. PhD the-
sis. Cornell University, 1995, p. 200. url: https://dl.acm.org/
doi/10.5555/269740.

161

https://www.ieh.uni-stuttgart.de/dokumente/dissertationen/2018_Dissertation_Wiest.pdf
https://www.ieh.uni-stuttgart.de/dokumente/dissertationen/2018_Dissertation_Wiest.pdf
https://www.ieh.uni-stuttgart.de/dokumente/dissertationen/2018_Dissertation_Wiest.pdf
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/2213977.2214056
https://dl.acm.org/doi/10.1145/2213977.2214056
https://dl.acm.org/doi/10.1145/2213977.2214056
https://arxiv.org/abs/1906.03590
http://arxiv.org/abs/1906.03590
http://arxiv.org/abs/1906.03590
https://doi.org/10.1109/59.575728
https://doi.org/10.1109/59.575728
https://doi.org/10.13140/2.1.2731.2327
http://www.pserc.cornell.edu/matpower/TN2-OPF-Derivatives.pdf
http://www.pserc.cornell.edu/matpower/TN2-OPF-Derivatives.pdf
https://dl.acm.org/doi/10.5555/269740
https://dl.acm.org/doi/10.5555/269740

BIBLIOGRAPHY

162

Appendix A

Operation Counts of
BLAS, LAPACK, and
MKL routines

This appendix chapter outlines the operation counts for the routines
used in the algorithms 1, 2, 3, 5, and 6 and the tables 4.1, 4.2, 4.3, 4.4,
and 4.5 in a central place.
Matrix and vector algebra operations usually require multiplications and
additions, which count as individual floating point operations (FLOPs).
On a hardware level, floating-point subtractions are a special case of ad-
ditions. The real-world throughput of all those operations are however
not similar. For instance, on the Intel Skylake architecture, a floating
point addition with operands sitting in a register takes 3 cycles, a mul-
tiplication takes 5 cycles, and a division takes 14 − 16 cycles [35].
Since most of the computations are conducted with complex numbers,
the inner complexity of basic operations with complex numbers must be
taken into account. Table A.1 shows the OPs and resulting theoretical
FLOP count required. In order to avoid confusion, the complex numbers
are shown as ordered pairs.

163

APPENDIX A. OPERATION COUNTS OF BLAS, LAPACK, AND
MKL ROUTINES

Table A.1: FLOP counts of basic complex operations

Name Math. Operation Transformed to real OPs FLOPs
Complex Addition (a, jb) + (c, jd) (a + c, j(b + d)) 2 Add. 2
Complex Subtraction (a, jb) − (c, jd) (a − c, j(b − d)) 2 Add. 2
Complex Multiplication (a, jb) · (c, jd) (ac − bd, j(bc + ad)) 4 Mult., 2 Add. 6

Complex Division (a, jb) / (c, jd)
(

ac−bd
c2+d2 , j (bc+ad)

c2+d2

) 4 Mult., 2 Div.,
2 Squares, 3 Add. 11

Table A.2 shows the BLAS, LAPACK, and MKL VM routines (OPs)
used in this thesis together with their theoretical floating point operation
count (FLOPs). The FLOPs data is derived from [9], [47], and [54].

Table A.2: Operation Counts of BLAS, LAPACK, and MKL routines used
throughout the thesis

Interface OP Description FLOPs

BLAS Lvl. 2 zgemv Complex matrix-vector multiplication 12n2

BLAS Lvl. 3 zgemm Complex matrix-matrix multiplication 12n3

MKL VM vzAdd Complex elementwise vector-vector addition 2n

vzMul Complex elementwise vector-vector multiplication 6n

vzDiv Complex elementwise vector-vector division 11n

vzExp Complex elementwise vector exponent -
vzAbs Absolute value of complex vector 3n

zomatadd Complex elementwise matrix-matrix addition 2n2

zimatcopy Complex conjugate of matrix n2

izamax Find index of max. abs. element of vector 2n

LAPACK zlacgv Complex conjugate of a vector n

zscal Scale complex vector with constant 2n

dgesv Solution of linear system Ax = b 8/3n3 + 7n2 + 7/3n

zgetrf Complex LU Factorization 8/3n3 − n2 + 13/3n

zgetri Complex Matrix Inverse from LU 16/3n3 − n2 + 20/3n

On modern systems (roughly Intel Pentium I and later), floating point
operation counts are no substitute for benchmarks. Real-world compu-
tational performance is heavily influenced by memory and cache usage,
branch prediction, and other CPU functionalities. However, the dis-
parity between the theoretical algorithmic complexity and real-world
performance allows for conclusions about the utilization of those func-
tionalities.

164

Appendix B

Benchmarks of BLAS and
LAPACK Operations

The dominating numerical operations in the power flow methods are com-
plex matrix-vector multiplications (zgemm()) for YBUS Jacobi and ZBUS
Jacobi methods and the solution of a numerical system (dgesv()) for the
YBUS Newton-Raphson method, respectively. The ZBUS Jacobi method
requires an additional matrix inversion (zgetrf(); zgetri()). Figure
B.1 shows the timings for these raw operations with the system and soft-
ware stack outlined in section 2.4.
The three operations are executed for matrix sizes from n = 5 to n = 5000,
representing similar node counts. The matrices were derived from ran-
domly generated, meshed high voltage grids. All operations were repeated
at least 100 times for the benchmark, after an initial warmup run. The so-
lution of the linear system is benchmarked with the resulting real-valued
Jacobi matrix of order 2n. The runtimes of the operations ranges from
around 1 µs for a complex matrix-vector multiplication with n = 5 to 14
seconds for a complex matrix inversion with n = 5000. Over the entire
range of grid sizes, the complex matrix multiplication is roughly 10 − 20
times faster than the solution of the linear system. In turn, the solution
of the linear system is as fast as the matrix inversion for matrix sizes up
to around n = 100, after which the inversion takes about twice as long up
to n = 5000.
The results indicate lower bounds for the runtime of the three power flow
methods, specifically the YBUS Newton-Raphson and ZBUS Jacobi meth-
ods. After the complex matrix inversion, the ZBUS Jacobi method executes

165

APPENDIX B. BENCHMARKS OF BLAS AND LAPACK
OPERATIONS

101 102 103

Number of Nodes = n

10−3

10−2

10−1

100

101

102

103

104
R
u
n
ti
m
e
/
m
s

Matrix Inversion

Solution of Linear System

Matrix-Vector Multiplication

Figure B.1: Raw Individual Timings of Solution of Linear System, Matrix In-
version, and Matrix-Vector Multiplication with varying matrix sizes

mostly matrix-vector multiplications, whereas the YBUS Newton-Raphson
method requires the solution of a linear system in every iteration (unless
an inexact Newton method is chosen). The more iterations are performed
without a change in the grid, the greater the advantage of the ZBUS Jacobi
method is. According to these results, the ZBUS Jacobi method can be up
to 20 times faster when a high number of computations are performed in
the same grid, as is the case in the example in section 6.2.
Of course, these benchmarks do not take into account sparse matrix for-
mulations (see section 5.2) and the additional operation that occur during
the solutions, especially during one iteration of the YBUS Newton-Raphson
method (see 4.2).

166

Appendix C

Grid Data

C.1 Low-voltage grid from section 4.5
The generic low-voltage grid used for the performance comparison in sec-
tion 4.5 was generated as a single-feeder grid with identical impedances
between the nodes. The goal was to create a totally generic grid with
realistic proportions and values, but no special features whatsoever. The
nodes are connected by cables with cross-section area 3 × 150 mm2 which
are all 50 meters long, a common distance for low-voltage grids in rural
villages. The electrical properties outlined in table C.1. The cable data
is taken from https://bruggcables.com/fileadmin/site/documents
/Mittelspannung/Produktkatalog_MS_NS_DE.pdf#page=14. The line
model is shown in figure 3.3.

Table C.1: Electrical properties of the low-voltage cable

per km per 50m
Resistance R 0.240 Ω 0.012 Ω
Reactance X 0.071 Ω 0.00355 Ω
Capacitance C 0.174 µF 0.0087 µF
Susceptance B 18.3 kΩ @ 50 Hz 366 kΩ @ 50 Hz

The assumed power at the nodes is randomly generated with a Weibull
distribution taken from [118], with parameters λ = 1, k = 1.7 and a scaling
factor of 4000 W. The pseudorandom number generator from Numpy is

167

https://bruggcables.com/fileadmin/site/documents/Mittelspannung/Produktkatalog_MS_NS_DE.pdf#page=14
https://bruggcables.com/fileadmin/site/documents/Mittelspannung/Produktkatalog_MS_NS_DE.pdf#page=14

APPENDIX C. GRID DATA

an implementation of MT19927 32-bit with seed 4268376. All loads are
assumed inductive with a cos ϕ of 0.95.

2000 4000 6000 8000 10000

Active power consumption / W

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

P
ro
b
a
b
li
ty

D
en

si
ty

Figure C.1: Probability Density Function (PDF) of the Weibull distribution
used for the performance measurements in section 4.5. Parameters are λ =
1, k = 1.7, moments are mean = 3569 W, variance = 4669677 W2, skew = 0.865,
kurtosis = 0.77

168

APPENDIX C. GRID DATA

C.2 Medium voltage test grid from section
5.1.2

Table C.2 shows the properties of the medium voltage grid used to show the
(lacking) potential of the YBUS Newton-Raphson method with line search
in section 5.1.2. The assumed powers randomly generated following the
same statistical function as shown in section C.1 and in figure C.1.

Table C.2: Overview of properties of the 3000-node medium voltage grid used
in section 5.1.2

Name Generic MV grid
Source randomly generated
Number of Nodes 3000
Number of Lines 3099
Number of Slack Nodes 1
Types of Lines 100% Cables
Degree of Intermeshing 2.06
Nominal Voltage Level 10 kV
Slack Voltage 10 kV (Line-Line voltage)

Distribution of R Distribution of X

0.0 0.2 0.4

Resistance / Ω

0

100

200

300

0.0 0.1 0.2 0.3

Reactance / Ω

0

100

200

300

Min 0.002 Ω Min 0.0012 Ω
Max 0.56 Ω Max 0.34 Ω
Mean 0.21 Ω Mean 0.12 Ω
Var 0.009 Ω2 Var 0.003 Ω2

Skew 0.14 Skew 0.14
Kurtosis −0.2 Kurtosis −0.2

169

APPENDIX C. GRID DATA

C.3 European Low Voltage Test Feeder

Table C.3: Overview of properties of the European Low-Voltage Test Feeder
used in section 6.1

Name European Low Voltage Test
Feeder

Source [50]
Location Manchester, UK
Number of Nodes 906
Number of Lines 905
Number of Slack Nodes 1
Types of Lines 100% Cables
Nominal Voltage Level 416 V
Slack Voltage 252.2 V (Line-Earth voltage with

tap changer set to 1.05 p.u.)

Distribution of R Distribution of X

0.000 0.005 0.010

Resistance / Ω

0

200

400

600

0.0000 0.0005 0.0010

Reactance / Ω

0

200

400

Min 6.18 · 10−6 Ω Min 2.53 · 10−6 Ω
Max 0.014 Ω Max 0.001 Ω
Mean 0.0012 Ω Mean 0.0001 Ω
Variance 4.06 · 10−6 Ω2 Variance 3.22 · 10−8 Ω2

Skew 2.97 Skew 2.12
Kurtosis 10.9 Kurtosis 4.97

170

APPENDIX C. GRID DATA

C.4 Low voltage grid from section 6.2
The low-voltage grid used in section 6.2 was derived from a real low-voltage
grid in the south of Germany. It connects 40 private households with un-
known load characteristics and 21 photovoltaic plants with a total installed
capacity is 461.8 kW, making the entire grid a net producer of energy on
days with high insolation. The grid topology is radial, the standard and
desired topology for low-voltage grids in Germany. Most of the connections
are cables, but parts of the grid still consist of overhead lines. Because all
of the lines are short, the parallel susceptance B is negligible and was not
part of the original dataset.

171

APPENDIX C. GRID DATA

Table C.4: Overview of properties of the Low Voltage Test Grid used in section
6.1

Name Low Voltage Test Grid
Source not public / shared by DGO
Location South of Germany
Number of Nodes 53
Number of Lines 52
Number of Slack Nodes 1
Types of Lines 63.5 % overhead lines, 36.5% ca-

bles
Nominal Voltage Level 400 V line-line
Slack Voltage 230 V line-earth

Distribution of R Distribution of X

0.000 0.025 0.050 0.075

Resistance / Ω

0.0

2.5

5.0

7.5

10.0

0.00 0.01 0.02

Reactance / Ω

0

2

4

6

Min 0.0024 Ω Min 0.00072 Ω
Max 0.082 Ω Max 0.02 Ω
Mean 0.019 Ω Mean 0.0077 Ω
Variance 0.00025 Ω2 Variance 2.55 · 10−5 Ω2

Skew 2.41 Skew 0.63
Kurtosis 6.48 Kurtosis −0.27

172

APPENDIX C. GRID DATA

Table B.1: Node Data for low voltage grid in section 6.2

Node Type Inst. PV / kW
0 PQ
1 PQ
2 PQ
3 PQ
4 PQ
5 PQ
6 PQ
7 PQ
8 PQ
9 PQ
10 PQ 22.80
11 PQ
12 PQ 6.97
13 PQ
14 PQ 2.00
15 PQ
16 PQ 58.00
17 PQ
18 PQ
19 PQ 12.40
20 PQ 12.40
21 PQ 8.40
22 PQ
23 PQ
24 PQ
25 PQ
26 PQ
27 PQ
28 PQ
29 PQ 3.00
30 PQ
31 PQ
32 PQ
33 PQ

Node Type Inst. PV / kW
34 PQ 84.40
35 PQ
36 PQ 29.00
37 PQ
38 PQ 27.30
39 PQ 5.10
40 PQ
41 PQ 4.40
42 PQ 29.60
43 PQ 46.60
44 PQ 27.40
45 PQ 9.90
46 PQ 15.87
47 Slack
48 PQ
49 PQ 28.06

173

APPENDIX C. GRID DATA

Table B.2: Line Data for the low voltage grid in section 6.2

From To R/mΩ X/mΩ
0 1 21.1529 2.7390
1 2 10.8999 7.7249
1 48 29.2119 20.7029
3 7 8.7199 6.1799
3 16 18.3119 12.9779
4 8 8.7599 0.7200
5 7 17.8759 12.6689
5 36 19.6199 13.9049
6 35 10.8999 7.7249
6 39 6.1039 4.3260
7 10 10.0980 5.4230
7 39 14.3879 10.1969
8 38 4.3600 3.0900
8 39 13.0799 9.2699
9 16 23.5999 6.8199
10 11 17.8199 9.5699
12 13 4.1580 2.2330
12 40 14.2559 7.6560
14 25 46.0719 8.5280
14 42 16.8339 3.1160
15 47 30.9000 11.9999
16 41 23.5999 6.8199
16 45 39.8699 7.3800
16 47 81.9549 15.1700
17 47 17.3069 2.2410
18 21 9.6149 1.2450
19 22 9.6149 1.2450
20 23 12.8199 1.6600
21 22 4.9440 1.9200
21 47 10.7120 4.1600
22 23 8.2399 3.2000
24 40 17.2259 9.2510
24 44 17.8199 9.5699
25 47 15.9479 2.9520

From To R/mΩ X/mΩ
26 27 7.7219 4.1470
27 46 11.8799 6.3800
28 46 19.2719 1.5840
29 43 7.8479 5.5619
29 44 10.8999 7.7249
30 31 17.4399 12.3599
30 43 21.7999 15.4499
31 32 13.1399 1.0800
33 47 41.1999 16.0000
34 35 11.7719 8.3429
34 48 6.1039 4.3260
36 37 4.3600 3.0900
38 42 15.2599 10.8149
42 47 78.8539 14.5959
44 47 19.6199 13.9049
45 47 42.0849 7.7899
46 47 28.3399 20.0849
49 47 2.4000 10.9398

174

APPENDIX C. GRID DATA

C.5 High voltage grid from section 6.3
The high-voltage grid used in section 6.3 was derived from a real high-
voltage grid in the south of Germany. The grid is connected to the overlay-
ing transmission grid by 11 transformers, which are modeled as slack nodes
with 5 different voltages, but identical voltage angle in the original dataset.
The 98 PQ nodes represent the underlying medium- and low-voltage grids.
The active and reactive power was sourced from a measurement at all of
the transformers with no further inside into the load characteristics. Many
of the PQ nodes have negative active power consumption due to the pho-
tovoltaics plants installed in lower grid levels. The lines are all overhead
lines except for short connections to transformers, which are not modeled
in this dataset.

175

APPENDIX C. GRID DATA

Table C.5: Overview of properties of the high-voltage grid used in section 6.3

Name HV Test Grid
Source not public / shared by grid opera-

tor
Location South of Germany
Number of Nodes 110
Number of Lines 125
Number of Slack Nodes 11
Types of Lines 100% Overhead Lines
Nominal Voltage Level 110 kV
Slack Voltages 117.95 kV - 120.35 kV

Distribution of R Distribution of X Distribution of B

0 10 20
Resistance / Ω

0

20

40

60

0 50 100 150
Reactance / Ω

0

25

50

75

0.00 0.01 0.02 0.03
Susceptance / Ω

0

20

40

Min 0.0016 Ω Min 0.001 Ω Min 0 Ω
Max 21.6 Ω Max 154.7 Ω Max 0.03 Ω
Mean 2.15 Ω Mean 11.0 Ω Mean 0.004 Ω
Variance 20.3 Ω2 Variance 853.5 Ω2 Variance 1.91 Ω2

Skew 3.8 Skew 4.14 Skew 3.26
Kurtosis 13.6 Kurtosis 15.6 Kurtosis 15.4

176

APPENDIX C. GRID DATA

Table B.3: Node Data for high voltage grid in section 6.3

Node Type |Uslack|/V

0 PQ -
1 PQ -
2 PQ -
3 PQ -
4 PQ -
5 PQ -
6 PQ -
7 PQ -
8 PQ -
9 PQ -
10 PQ -
11 PQ -
12 PQ -
13 PQ -
14 PQ -
15 PQ -
16 PQ -
17 PQ -
18 PQ -
19 PQ -
20 PQ -
21 PQ -
22 PQ -
23 PQ -
24 PQ -
25 PQ -
26 PQ -
27 PQ -
28 PQ -
29 PQ -
30 Slack 119786.787748
31 PQ -
32 PQ -
33 PQ -

Node Type |Uslack|/V

34 PQ -
35 PQ -
36 PQ -
37 PQ -
38 PQ -
39 PQ -
40 PQ -
41 PQ -
42 PQ -
43 PQ -
44 PQ -
45 Slack 119321.063757
46 PQ -
47 Slack 119321.063757
48 PQ -
49 PQ -
50 PQ -
51 PQ -
52 PQ -
53 PQ -
54 PQ -
55 PQ -
56 PQ -
57 PQ -
58 Slack 119900
59 PQ -
60 PQ -
61 PQ -
62 Slack 119900
63 PQ -
64 Slack 119900
65 PQ -
66 PQ -
67 PQ -

177

APPENDIX C. GRID DATA

Node Type |Uslack|/V

68 PQ -
69 PQ -
70 PQ -
71 Slack 120350
72 PQ -
73 Slack 120350
74 PQ -
75 PQ -
76 PQ -
77 PQ -
78 PQ -
79 PQ -
80 PQ -
81 PQ -
82 PQ -
83 Slack 117950
84 Slack 117950
85 PQ -
86 PQ -
87 PQ -
88 PQ -
89 PQ -
90 PQ -
91 PQ -
92 PQ -
93 PQ -
94 PQ -
95 PQ -
96 PQ -
97 PQ -
98 PQ -
99 PQ -
100 PQ -
101 PQ -
102 PQ -
103 PQ -
104 PQ -

Node Type |Uslack|/V

105 PQ -
106 PQ -
107 PQ -
108 PQ -
109 Slack 118800.004721

178

APPENDIX C. GRID DATA

Table B.4: Line Data for the high voltage grid in section 6.3

From To R/Ω X/Ω B/mΩ
10 11 0.0147 0.0368 4.0
10 76 0.0011 0.0039 1.3
10 97 0.0000 0.0002 0.0
11 54 0.0000 0.0002 1.4
11 103 0.0138 0.0345 3.8
12 47 0.0129 0.0323 3.5
12 55 0.0000 0.0001 1.1
12 82 0.0343 0.0860 9.4
13 15 0.0198 0.0498 5.4
13 61 0.0032 0.0098 1.1
13 76 0.0030 0.0079 0.9
14 76 0.0030 0.0079 0.9
14 86 0.0243 0.0608 6.6
14 62 0.0032 0.0098 1.1
15 86 0.0045 0.0112 1.2
16 82 0.0256 0.0678 7.5
17 80 0.0004 0.0012 0.1
17 82 0.0078 0.0241 2.7
17 108 0.0253 0.0789 8.8
18 67 0.0033 0.0094 3.5
18 76 0.0015 0.0042 2.7
19 67 0.0057 0.0154 1.5
19 83 0.0066 0.0179 1.8
20 85 0.0029 0.0102 6.9
20 77 0.0000 0.0002 0.0
20 83 0.0270 0.0722 7.2
21 82 0.0053 0.0256 4.2
21 107 0.0002 0.0001 0.6
21 22 0.0018 0.0087 1.8
22 25 0.0143 0.0686 14.0
22 57 0.0000 0.0001 0.5
22 102 0.0000 0.0001 0.0
23 53 0.0163 0.0561 5.7
23 82 0.0102 0.0285 3.8
23 101 0.0000 0.0001 0.0
24 26 0.0030 0.0102 1.0
24 53 0.0134 0.0428 4.4

From To R/Ω X/Ω B/mΩ
25 66 0.0079 0.0451 5.4
25 81 0.0000 0.0001 0.0
26 66 0.0074 0.0386 4.1
26 58 0.0076 0.0191 2.1
27 93 0.0066 0.0176 1.9
27 91 0.0094 0.0295 3.2
27 78 0.0000 0.0001 0.0
28 29 0.0091 0.0314 2.8
28 90 0.0074 0.0231 2.6
28 93 0.0085 0.0239 2.5
29 95 0.0000 0.0002 0.0
30 32 0.0027 0.0080 1.0
30 48 0.0039 0.0116 1.4
30 106 0.0000 0.0001 0.0
31 99 0.0012 0.0039 0.4
31 46 0.0107 0.0320 3.9
31 110 0.0108 0.0345 4.0
32 100 0.0012 0.0039 0.4
32 59 0.0074 0.0222 2.7
33 75 0.0084 0.0262 2.9
33 50 0.0015 0.0046 0.5
33 66 0.0186 0.0580 6.4
34 35 0.0214 0.0679 7.2
34 75 0.0049 0.0152 1.7
34 109 0.0130 0.0402 4.5
35 63 0.0000 0.0001 0.0
36 69 0.0000 0.0000 0.0
36 92 0.0036 0.0129 1.4
36 110 0.0023 0.0081 0.9
37 38 0.0116 0.0407 4.6
37 105 0.0000 0.0001 0.0
37 110 0.0108 0.0382 4.3
38 94 0.0055 0.0193 2.2
38 73 0.0143 0.0476 5.4
39 74 0.0015 0.0037 0.4
39 89 0.0020 0.0051 0.6
39 96 0.0138 0.0437 4.8

179

APPENDIX C. GRID DATA

From To R/Ω X/Ω B/mΩ
40 56 0.0002 0.0004 0.0
40 84 0.0160 0.0284 2.7
40 98 0.0021 0.0039 0.4
41 76 0.0036 0.0176 6.8
42 76 0.0003 0.0008 4.5
43 76 0.0001 0.0007 5.5
44 70 0.0079 0.0143 1.3
44 52 0.0001 0.0001 0.0
44 60 0.0071 0.0131 1.2
46 66 0.0094 0.0306 3.4
46 66 0.0078 0.0236 2.8
46 65 0.0265 0.0840 15.0
47 97 0.0021 0.0055 1.9
48 110 0.0043 0.0154 1.7
49 67 0.0035 0.0093 1.0
49 67 0.0035 0.0093 1.0
51 58 0.0181 0.0632 7.2
51 94 0.0110 0.0382 4.4
52 96 0.0099 0.0344 3.9
56 96 0.0157 0.0449 5.0
58 66 0.0088 0.0279 4.0
59 66 0.0092 0.0277 3.3
64 74 0.0080 0.0197 2.2
64 96 0.0140 0.0442 6.0
65 85 0.0506 0.1719 31.9
68 76 0.0048 0.0145 5.0
68 85 0.0394 0.1066 16.4
70 104 0.0115 0.0205 1.9
71 84 0.0142 0.0255 2.4
71 104 0.0172 0.0310 2.9
72 82 0.0152 0.0468 5.3
74 96 0.0152 0.0472 5.3
76 97 0.0011 0.0041 1.4
79 82 0.0082 0.0254 3.9
82 93 0.0281 0.0910 10.9
82 93 0.0281 0.0910 10.5
82 103 0.0204 0.0514 5.6
85 109 0.0308 0.1097 19.4
86 108 0.0131 0.0410 4.6
89 110 0.0148 0.0464 5.5

180

	Abstract
	Kurzfassung
	Table of Abbreviations
	Nomenclature
	Introduction
	Motivation
	History and State of the Art
	Contributions of the Thesis
	Structure of the Thesis

	Computational Performance
	A Performance Comparison Comparison
	Modern CPU Architecture
	Guidelines for the Design of Performant Numerical Algorithms
	Benchmarking Methodology

	Principles of Power Flow Computations
	The Power Flow Model
	The YBUS Formulation of the Power Flow Model
	Handling of Slack Nodes
	Convergence Criteria

	Power Flow Solution Methods
	YBUS Fixed-Point Methods
	Principle
	The YBUS Jacobi Method
	The YBUS Gauss-Seidel Method
	The YBUS Relaxation Method

	The YBUS Newton-Raphson Method
	The ZBUS Jacobi Method
	Backward/Forward Sweep Method
	Performance Characteristics
	Power Flow Complications
	Load Characteristics
	Multiple Slack Nodes
	PV Nodes
	Shunt Elements
	Asymmetry
	Multiple Voltage Levels
	Transformers

	Handling of Convergence Problems

	Computational Optimization Approaches
	Acceleration Factors
	Acceleration of the YBUS Gauss-Seidel method
	Acceleration of the YBUS Newton-Raphson method

	Exploiting Sparsity
	Sparse ZBUS Jacobi Method
	Sparse YBUS Newton-Raphson Method

	Grid Reduction Methods
	Lossless Grid Reduction Methods
	Lossy Grid Reduction Methods

	Weak Load Detection
	Separate Weak Load Detection
	Modified Convergence Criterion

	Parallelization

	Power Flow Case Studies
	Time-Series Power Flow Computations in the European LV Feeder
	Monte Carlo Simulation of EV Penetration in a Low-Voltage Grid
	n-2 Contingency Analysis in a High Voltage Grid

	Summary
	Bibliography
	Operation Counts of BLAS, LAPACK, and MKL routines
	Benchmarks of BLAS and LAPACK Operations
	Grid Data
	Low-voltage grid from section 4.5
	Medium voltage test grid from section 5.1.2
	European Low Voltage Test Feeder
	Low voltage grid from section 6.2
	High voltage grid from section 6.3

