Estimation of Flexibility Potentials in Active Distribution Networks

Von der Fakultät
Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart
zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Abhandlung

vorgelegt von
Daniel Alfonso Contreras Schneider
aus Santiago, Chile

Hauptberichter: Prof. Dr.-Ing. habil. K. Rudion
Mitberichter: Prof. Dr.-Ing. J. Myrzik
Tag der Prüfung: 04.10.2021

Institut für Energieübertragung und Hochspannungstechnik
der Universität Stuttgart

2021
Estimation of Flexibility Potentials in Active Distribution Networks

© 2021 Contreras Schneider, Daniel Alfonso

Herstellung und Verlag: BoD – Books on Demand, Norderstedt

ISBN: 978-3-75439-704-6
Abstract

Replacing conventional power plants by distributed energy resources (DER) in the MV and LV grids poses great new challenges for the planning and operation of distribution grids. Controlling a handful of conventional power plants demands significantly less resources than operating numerous decentralized plants, especially when it involves the supply of ancillary services to maintain the grid stability. Nevertheless, most ancillary services are required at the transmission system level, meaning that vertical supply of flexibility becomes necessary, requiring new methods to quantify how much flexibility can be provided from distribution (DSO) to transmission system operators (TSO). The feasible operation region (FOR) allows capturing the aggregated flexibility potential of DER within a distribution grid, while respecting the technical restrictions of both plants and grid.

This thesis proposes a novel approach to compute the FOR, the Linear Flexibility Aggregation (LFA) method, based on the solution of linear OPF. With the objective of reducing the computation time, without compromising the accuracy of the assessed FOR.

The LFA algorithm is comprehensively evaluated throughout this thesis, focusing on the accuracy of speed of the approach. The analysis quantifies the impact of the linear OPF model in the FOR computation, as well as it identifies all relevant parameters that can have an impact in the computation time.

It is shown that the proposed method provides a considerable reduction in processing time compared to similar methods, e.g. Monte-Carlo simulations or non-linear OPF-based methods. The linearization of the power flow equations has an impact in the accuracy of the solution, however, the trade-off with the reduction of the computational time is acceptable.

The dissertation closes with the suggestion of three use cases for the LFA method. Firstly, it is described how a fast computation of the FOR could be used to study the long-term provision of flexibility in distribution grids. Secondly, the usage of the LFA for the vertical aggregation of flexibility over different voltage levels is shown. Finally, the inclusion of the FOR concept in a congestion management approach, including redispatch at the distribution grid level is demonstrated. The proposal and analysis of these use cases applied to large distribution grids would not have been possible without a fast and reliable computation algorithm, like the LFA.

Overall, the coordination between grid operators can benefit significantly from the fast computation of the FOR, allowing its inclusion not only in planning processes, but also in everyday operation processes.
# Table of Contents

1 Introduction.............................................................................................................1  
1.1 Motivation and Background.............................................................................1  
1.2 State-of-the-Art and Objectives......................................................................3  
1.3 Structure of the Thesis ...................................................................................4  
1.4 Scientific Thesis ............................................................................................5  

2 Use of Flexibilities for the Provision of Ancillary Services in Power Systems ..............................................................................6  
2.1 Flexibility in Power Systems.........................................................................6  
2.2 Flexibility Providing Units (FPU).................................................................10  
2.3 Vertical Provision of Flexibility for Ancillary Services ..............................13  
2.4 Capability Charts of FPU ............................................................................15  
  2.4.1 Definition of Reference Convention....................................................15  
  2.4.2 Capability Charts of Different Types of DER ......................................16  
  2.4.3 Grid Codes Requirements .................................................................25  

3 Feasible Operation Region of Active Distribution Networks .................27  
3.1 Feasible Operating Region (FOR) ..................................................................28  
3.2 Approaches to Compute the FOR of Distribution Grids .............................30  
  3.2.1 Analytic Approaches ............................................................................30  
  3.2.2 Geometric Approaches .........................................................................33  
  3.2.3 Random Sampling Approaches ..........................................................34  
  3.2.4 Optimization Based Approaches ........................................................40  

4 Fast Computation of FOR with Linear Optimization ...............................48  
4.1 Method Objectives and Differentiation .........................................................48  
4.2 Linear OPF-based Method to Compute the FOR ........................................49  
  4.2.1 General Formulation of a Linear OPF ................................................50  
  4.2.2 Linearization of Power Flow Equations ..............................................50  
  4.2.3 Adding FPU Flexibility into State Variables Vector .............................53  
  4.2.4 Linearization of Branch Flow Equations .............................................54  
  4.2.5 Voltage and Branch Flow Constraints ................................................54  
  4.2.6 FPU/FPG Constraints ........................................................................56  
  4.2.7 Objective Function .............................................................................57  
  4.2.8 Selection of Initial Operation Point .....................................................58  
  4.2.9 Iterative Reconstruction of FOR boundaries .......................................58  
  4.2.10 On the Convexity of the FOR ..........................................................60  
  4.2.11 Method to Correct Linearization Error in FOR ....................................61  
4.3 Modelling of Linear FPU/FPG Boundaries ................................................62
4.4 Impact of Topology Changes on FOR Computation ............................... 65
  4.4.1 Switching Power Lines ...................................................................... 65
  4.4.2 OLTC Transformers .......................................................................... 67
4.5 Coupling the Linear Aggregation Method with Time-Series ........................ 67
  4.5.1 Modelling of FPU Considering Time-Series ....................................... 68
  4.5.2 Sequential FOR Computation Using Time-Series ............................. 70

5 Validation of Linear Flexibility Aggregation Method ................................. 72
  5.1 Grid Models ............................................................................................ 72
    5.1.1 CIGRE MV Grid ................................................................................. 72
    5.1.2 CIGRE LV Feeders ............................................................................ 73
    5.1.3 Real Urban Distribution Grid .............................................................. 73
  5.2 Validation of Linear Power Flow Model .................................................. 75
  5.3 FOR Linearization Error Correction in LFA ............................................. 77
  5.4 Analysis of the Convexity of the FOR Computation ................................. 80
  5.5 Impact of Grid Topology and Constraints in the FOR ............................. 83
  5.6 Comparison Between LFA and RS Approaches ..................................... 86
  5.7 Comparison of LFA to Similar Approaches .......................................... 91

6 Use Cases for the Planning and Operation of Distribution Grids ........................ 94
  6.1 Time-Series Based Aggregation ............................................................. 95
    6.1.1 Long-Term Time-Series Analysis ...................................................... 96
    6.1.2 Short-Term Time-Series-based Analysis ......................................... 100
  6.2 Multi-Level Aggregation ........................................................................ 104
    6.2.1 Multi-Level Aggregation in MV/LV Grids .......................................... 106
    6.2.2 Impact of Voltage at the Interconnection Point ................................ 107
    6.2.3 Voltage Correction at Interconnection Points ................................ 110
    6.2.4 Multi-Level Aggregation in HV/MV Grids ......................................... 111
  6.3 Redispatch Concept ............................................................................. 115
    6.3.1 Definition of redispatch OPF including FOR constraints .................. 116
    6.3.2 Operating a redispatch concept using FOR ..................................... 117
    6.3.3 Numerical Results ........................................................................... 117

7 Conclusion and Outlook .............................................................................. 120
  7.1 Conclusion ........................................................................................... 120
  7.2 Outlook ................................................................................................. 122

8 References ................................................................................................. 124

Appendix ....................................................................................................... 140
8 References


[53] E. Rivero, D. Six, A. Ramos and M. Maenhoudt, "Deliverable 1.3 - Preliminary assessment of the future roles of DSOs, future market


