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Abstract 

Replacing conventional power plants by distributed energy resources (DER) in 

the MV and LV grids poses great new challenges for the planning and operation 

of distribution grids. Controlling a handful of conventional power plants demands 

significantly less resources than operating numerous decentralized plants, espe-

cially when in involves the supply of ancillary services to maintain the grid stability. 

Nevertheless, most ancillary services are required at the transmission system 

level, meaning that vertical supply of flexibility becomes necessary, requiring new 

methods to quantify how much flexibility can be provided from distribution (DSO) 

to transmission system operators (TSO). The feasible operation region (FOR) al-

lows capturing the aggregated flexibility potential of DER within a distribution grid, 

while respecting the technical restrictions of both plants and grid.  

This thesis proposes a novel approach to compute the FOR, the Linear Flexibility 

Aggregation (LFA) method, based on the solution of linear OPF. With the objective 

of reducing the computation time, without compromising the accuracy of the as-

sessed FOR. 

The LFA algorithm is comprehensively evaluated throughout this thesis, focusing 

on the accuracy of speed of the approach. The analysis quantifies the impact of 

the linear OPF model in the FOR computation, as well as it identifies all relevant 

parameters that can have an impact in the computation time. 

It is shown that the proposed method provides a considerable reduction in pro-

cessing time compared to similar methods, e.g. Monte-Carlo simulations or non-

linear OPF-based methods. The linearization of the power flow equations has an 

impact in the accuracy of the solution, however, the trade-off with the reduction of 

the computational time is acceptable. 

The dissertation closes with the suggestion of three use cases for the LFA 

method. Firstly, it is described how a fast computation of the FOR could be used 

to study the long-term provision of flexibility in distribution grids. Secondly, the 

usage of the LFA for the vertical aggregation of flexibility over different voltage 

levels is shown. Finally, the inclusion of the FOR concept in a congestion man-

agement approach, including redispatch at the distribution grid level is demon-

strated. The proposal and analysis of these use cases applied to large distribution 

grids would not have been possible without a fast and reliable computation algo-

rithm, like the LFA. 

Overall, the coordination between grid operators can benefit significantly from the 

fast computation of the FOR, allowing its inclusion not only in planning processes, 

but also in everyday operation processes.  
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